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Preface

Bayesian inference is a statistical process that quantifies the degree of belief of hypothe-
sis, events or values of parameters. Many Bayesian methods have been developed in various
areas of science and engineering, especially in statistical physics, medical sciences, electrical
engineering, and information sciences, etc. Since there are many types of modeling and para-
metric uncertainty in civil engineering problems, Bayesian probabilistic methods are useful
in the estimation of uncertain parameters and quantification of the associated uncertainties.
For example, loadings, such as earthquake ground motion or complete wind pressure profile,
cannot be predetermined at the structural design stage. It is also difficult to determine to a
very precise level the mechanical properties for some materials, e.g., concrete, rock and soil,
etc. Hourly/daily emission rates by vehicles and factories are uncertain. It is also difficult to
obtain the spatial distribution of the air quality information in the nearby region. Otherwise, the
transportation of air pollutants can be modeled. Furthermore, the meteorological conditions
including wind speed, wind direction and rainfall of the day for prediction are also uncertain.
These are important factors for modeling the pollutant flow and also for determination of dam
design capacity. Traffic loads are also uncertain. These are just some of the civil engineering
examples for which Bayesian probabilistic methods are applicable.

Even though Bayesian inference is useful for uncertainty quantification in civil engineering
applications, the literature shows that Bayesian research in civil engineering has great potential
for exploration. This book introduces some recently developed Bayesian methods and applica-
tions to a variety of areas in civil engineering although structural dynamics is the main focus.
These methods are developed for the identification of dynamical systems, but some of them are
also applicable to static systems. There are two levels of system identification problems to be
considered although they are strongly related. The first level is parametric identification with
a specified model class. A number of methods are presented for different working conditions
in different identification problems. The second level is on the selection of model class. In
other words, it attempts to use measurement to infer not only the uncertain parameters but
also a suitable model class for system identification. This book presents various applications
in civil engineering, including air quality prediction, finite-element model updating, hydraulic
jump, seismic attenuation relationship, and structural health monitoring, etc.
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1
Introduction

Keywords: Thomas Bayes; information; model updating; uncertainty

1.1 Thomas Bayes and Bayesian Methods in Engineering

The Reverend Thomas Bayes [1702–1761] was a British mathematician and Presbyterian
minister. He is well known for his paper ‘An essay towards solving a problem in the doctrine
of chances’ [14], which was submitted by Richard Price two years after Bayes’ death. In
this work, he interpreted probability of any event as ‘the chance of the event expected upon its
happening.’ There were ten propositions in his essay and Proposition 3, 5 and 9 are particularly
important. Proposition 3 stated that the probability of an event X conditional on another event
Y is simply the ratio of the probability of both events to the probability of the event Y . This
is the definition of conditional probability. In Proposition 5, he introduced the concept of
conditional probability and showed that it can be expressed regardless of the order in which
the events occur. Therefore, the concern in conditional probability and Bayes’ theorem is on
correlation but not causality. The consequence of Proposition 3 and 5 is the Bayes’ theorem
even though this was not what Bayes emphasized in his article. In Proposition 9, he used a
billiard example to demonstrate his theory. The work was republished in modern notation by
G. A. Barnard [13]. In 1774, Pierre-Simon Laplace extended the results by Bayes in his article
‘Mémoire sur la probabilité des causes par les événements (in French).’ He treated probability
as a tool for filling up the gap of knowledge. The Bayes’ theorem is one of the most frequently
encountered eponyms in the literature of statistics.

Bayes is also well known for another article ‘A Defence of the Mathematicians against the
Objections of the Author of the Analyst (1736)’, in which he defended the logical foundation
of the calculus by Issac Newton. Thomas Bayes was elected as a fellow of The Royal Society
of the United Kingdom in 1742.

In the area of statistical analysis, there are two main parties, namely frequency probability
and Bayesian inference. Frequentists define probability (of an event) as the limit of its relative

Bayesian Methods for Structural Dynamics and Civil Engineering Ka-Veng Yuen
© 2010 John Wiley & Sons (Asia) Pte Ltd



2 Bayesian Methods for Structural Dynamics and Civil Engineering

frequency for a large number of trials:

P = lim
N→∞

N1

N
(1.1)

where N1 is the number of trials that the event occurs among the total of N trials. This
definition of probability narrows down its applicability since probability can only be assigned
to an event whose random experiment is available. On the contrary, Bayesian inference allows
the definition for the probability of an event or a statement, in which a random experiment
cannot be designed. This offers a different dimension of probability for degree of belief, which
is regarded as plausibility.

Bayesian methods have been widely used in many areas due to the pioneering work by
Thomas Bayes. The Bayesian theory has had great advancement after the significant work by
Harold Jeffreys [121], Richard T. Cox [63] and Edwin T. Jaynes [115, 117–120]. Since then, dif-
ferent Bayesian methods have been developed and widely applied to many different disciplines
of natural sciences, social sciences and engineering, especially in statistical physics [116, 119],
electricity usage [42], engineering hydrology [165], econometrics [300], archeology [38], in-
formation sciences [123, 180], system reliability [167, 301], prediction of concrete strength
[87], structural dynamics [199], medical sciences [144, 254, 274], fatigue [166], forensic
science [259], marketing [223], mechanical engineering [269], computer science [152], engi-
neering geology [220], aerospace engineering [40], finance [213], population migration [217]
and many others [80], etc.

Bayesian inference is very useful for civil engineering applications because there are many
types of modeling and parametric uncertainty in civil engineering problems. In structural
engineering, excitation, such as earthquake ground motion or complete time-varying wind
pressure profile, cannot be predetermined at the structural design stage. Material properties are
difficult to determine to a precise level for some materials, e.g., concrete. The number and size
of cracks in concrete beams are also uncertain. There are also modeling errors, such as rigid
joint assumption, that can be treated as modeling uncertainty. In geotechnical engineering,
the underground geological profile is determined by very limited information with ground
investigation. Furthermore, even for carefully handled samples, laboratory test results of soil
properties, e.g., plastic limit and liquid limit, exhibit high level of uncertainty. There are also
modeling errors in constitutive relationships and they can be treated as modeling uncertainty. In
environmental engineering, hourly/daily emission by vehicles and factories is also uncertain.
It is also difficult to obtain the complete spatial distributions of the air quality information
and meteorological conditions in the city of concern and other surrounding cities. In traffic
engineering, the traffic loading and traffic flow are uncertain. These are only some of the
examples of uncertainty appearing in civil engineering and the Bayesian probabilistic method
is useful for explicit treatment of the modeling uncertainty and quantification of the parametric
uncertainty.

Even though Bayesian inference is useful for uncertainty quantification that fulfills the need
in civil engineering, the literature shows that developments and applications of this powerful
tool in civil engineering are still at an early stage. Therefore, there is plenty of room to be
explored for Bayesian applications in civil engineering. This book introduces some recently
developed Bayesian methods and applications to a number of areas in civil engineering. The
main concern here is on the identification of dynamical systems, but some of the methods
are also applicable to static problems. Two types of problems in system identification are
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considered. The first type is parametric identification for a prescribed mathematical model
with uncertain parameters. The second type is on the selection of a class of parametric models
based on system response measurements. In other words, the measurement is used to infer not
only the uncertain parameters but also the structure of the mathematical model. Applications
include different areas in civil engineering, such as air quality prediction, finite-element model
updating, hydraulic jump, seismic attenuation empirical relationship, and structural health
monitoring, etc.

The idea of Bayesian updating is similar to our thinking process but it provides also the
basis for quantification. We have a perception of different people and matters based on our
experience, i.e., data. When a new event happens (i.e., new data is obtained), it modifies
our perception. In other words, our perception is not only determined by the latest piece of
information but it also depends on the original perception. In Bayesian analysis, the original
perception is regarded as the prior information and the new piece of information is utilized to
update our perception or mathematical model.

1.2 Purpose of Model Updating

There are two main purposes of model updating or system identification. One common goal
is to identify physical parameters, e.g., stiffness of a structural element or the diffusion rate
of an air pollutant. These identified parameters can be further used as indicator for the status
of the system or phenomenon. For example, the stiffness parameter of a structural member
can be monitored from time to time and an abnormal reduction indicates possible damage of
the member. However, reduction may be simply due to statistical uncertainty. Therefore, it is
necessary to quantify the uncertainty of the estimation so that one can distinguish whether the
parameter change is due to deterioration of the structural member. In this case, it is desirable
to obtain a narrow distribution of the parameter so that small changes can be detected with a
high level of confidence.

Another purpose of model updating is to obtain a mathematical model to represent the
underlying system for future prediction. Even though there are also parameters to be identified
as in the previous case, these parameters may not necessarily be physical, e.g., coefficients
of auto-regressive models. In this situation, the identified parameters are not necessarily as
important as the previous case provided that the identified model provides an accurate predic-
tion for the system output. It will be shown in the following chapters that there is no direct
relationship between satisfactory model predictions and small posterior uncertainty of the
parameters. This point will be further elaborated in Chapter 6. Nevertheless, no matter for
which purpose, quantification of the parametric uncertainty is useful for further processing.
For example, it can be utilized for comparison of the identified parameter values at different
stages or for uncertainty analysis of the output of the identified model. Furthermore, it will
be demonstrated in Chapter 6 that quantification of the posterior uncertainty allows for the
selection of a suitable class of models for parametric identification.

Using the quantified uncertainty obtained from Bayesian methods, there are two important
types of applications. The first category is robust reliability analysis. Under severe earthquake
excitations, buildings and bridges may exhibit significant nonlinear behavior. With a stochas-
tic representation of the anticipated ground motions [96, 130, 237], one important reliability
problem is to determine the first passage probability of some response quantities of interest in a
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prescribed duration. The first passage problem involving nonlinear dynamics is a well-known
challenging problem especially for multi-degree-of-freedom systems. Monte Carlo simulation
methods offer a promising means regardless of the number of uncertain parameters or degrees
of freedom [225]. However, it is not efficient for estimation of rare events because it requires
a large number of samples in order to obtain a sufficient number of rare failed samples. In
order to reduce the number of samples without sacrificing the accuracy of the estimates, many
simulation techniques were developed, including numerical solutions of the Kolmogorov equa-
tion [221], importance sampling [12, 176, 231] and adaptive sampling [37]. The importance
sampling and adaptive sampling methods attempt to increase computational efficiency by gen-
erating samples in the high-probability density regions of the failure domain. However, these
methods encounter substantial difficulties when the number of random variables is large [11],
e.g., in the case of reliability analysis for dynamical systems.

The controlled Monte Carlo simulation method [209], the subset simulation method [9] and
the spherical subset simulation [135] were developed to solve problems with a high dimension,
i.e., a large number of random variables. These methods are applicable to general nonlinear
systems and are shown to be robust and significantly more efficient than standard Monte Carlo
simulations. However, it is reasonable to expect that a general/robust simulation method might
not be the most efficient for some special cases, e.g., for linear systems. For example, ISEE
[10, 293] was developed for linear time-invariant systems due to the appreciation of the fact
that ‘the efficiency of a reliability method is often gained at the expense of generality’ and
it was proven to be extremely efficient. Another efficient algorithm for solving the reliability
problem of a linear system is the domain decomposition method [134].

The aforementioned methods can be applied to evaluate the reliability of engineering sys-
tems subjected to stochastic input with a given mathematical model. On the other hand, if a
parametric model of the underlying system is available and the probability density function
of these parameters is obtained by Bayesian methods, the uncertain parameter vector can be
augmented to include the model parameters and the uncertain input components. Then, robust
reliability analysis can proceed for stochastic excitation with an uncertain mathematical model.
This allows for more realistic reliability evaluation in practice so that the modeling error and
other types of uncertainty of the mathematical model can be taken into account.

Another type of important applications is structural vibration control. This area has received
great attention in the last several decades [112, 248]. Because complete information about a
dynamical system and its environment is never available, the system and excitation can not
be modeled exactly. Classical control design methods based on a single nominal model of the
system may fail to create a controlled system that provides satisfactory and robust performance.
Robust control methods, e.g., H2, H∞ and μ-synthesis, were therefore proposed so that the
optimal controller provides robust performance and stability for a set of possible models of
the system [71, 72]. In a probabilistic robust control approach, an additional dimension is
introduced by using probabilistic descriptions of all the possible models when selecting the
controller to achieve optimal performance. These probability distributions give a measure of
how plausible the parameter values are and they may be obtained from engineering judgement
or Bayesian system identification methods.

Over the last two decades, there has been increasing interest in probabilistic, or stochastic,
robust control theory. Monte Carlo simulation methods have been used to synthesize and
analyze controllers for uncertain systems [170, 255]. First- and second-order reliability meth-
ods were incorporated to compute the probable performance of linear-quadratic-regulator
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controllers (LQRs) [78, 79, 252, 253]. By the probability density function of the uncertain
parameters of a structural model, an efficient asymptotic expansion of Laplace type [197]
was used to approximate the probability integrals that are needed to determine the optimal
parameters for a passive tuned mass damper [200] and the optimal control gains for an active
mass driver [172, 283] for robust structural control. In May and Beck [172], the proposed
controller feeds back output measurements at the current time, where the output corresponds
to certain response quantities that need not be the full state vector of the system. In Yuen and
Beck [283], the method was extended to consider additional feedback information from the
past output measurements. It improves the performance of the control system without requir-
ing extra hardware cost. This method was also applied to semi-active controlled systems with
magnetorheological (MR) dampers [298].

1.3 Source of Uncertainty and Bayesian Updating

There has been a lot of debate in the literature of Philosophy and Physics on whether natural
phenomena are deterministic or random but the uncertainty considered in this book is not
directly related to this issue. First, consider a 100-degree-of-freedom chain-like system depicted
in Figure 1.1. The mass and spring constants are taken to be M1 = M2 = · · · = M100 = 1.0 kg
and K1 = K2 = · · · = K100 = 5000 N/m. The governing equation of the system is:

Mẍ(t) + Kx(t) = 0 (1.2)

where x = [x1, x2, . . . , x100]T is the nodal displacement vector, the mass matrix is M =
M1I100, I100 is the 100×100 identity matrix, and the stiffness matrix is:

K = K1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0

2 −1

. . .
. . .

2 −1

sym 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.3)

As a result, the fundamental frequency of the system is 0.1759 Hz.

· · ·
K1 K2 K3 K99 K100

M1 M2 M99 M100

Figure 1.1 Chain-like system

Note that there is no energy dissipating mechanism (zero damping matrix) included in
this model. Figure 1.2 shows the free vibration response of the mass M50 in the middle of
the chain with an zero initial condition except that the mass at the right end (M100) has an
initial displacement of 0.01 m. The response appears to be random even though the system is
deterministic with a simple initial condition and zero excitation. Figures 1.3 and 1.4 zoom into
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Figure 1.2 Response of the 100-DOF system

the first and last 5 s of the response. In the first 0.6 s, the response of this mass was almost zero
since the wave has not yet arrived. After the first wave front arrived, the response reached the
maximum and decayed rapidly even though there was no energy dissipating mechanism in the
mathematical model. The response mitigation was due to energy transportation by the traveling
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Figure 1.3 Response of the 100-DOF system (first 5 s)
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Figure 1.4 Response of the 100-DOF system (last 5 s)

waves. On the other hand, if only the response of the last 5 s was observed, it appeared as a
random response even though there were some major frequency contents. This simple example
illustrates an important feature of many phenomena in which only part of the complete picture
can be observed. If one focuses on the measurement of the motion of M50 between 0.75 and
2.0 s, it may be misinterpreted as the presence of an efficient energy dissipation mechanism.
If only the last 5 s of the response was measured, it may be interpreted as a random response.
However, the existence of uncertainty is only due to the fact that the information of the motion
of all the other masses is unknown and the combination of the motion by the waves of different
frequencies blurs the underlying behavior of the system. Its meaning is similar to a Chinese
proverb: ‘A blind touches an elephant.’

This example demonstrates that even for a deterministic system without any external loading,
the response appears to be uncertain. In the real world, there are many types of unmodeled
behavior/dynamics of complex physical phenomena (e.g., chaotic systems) and one possible
approach is to treat them as random variables or random processes. Then, statistical moments
are used to represent the overall behavior. This type of error is regarded hereafter as a modeling
error. Another main source of uncertainty is due to the finite amount of information carried
by the data. Due to the finite amount of the measurement, and hence the finite amount of
information, identification results can be determined up to finite precision so uncertainty gets
into the picture. Finally, due to the finite precision of data acquisition, measurement error is
induced, including electrical noise and quantization error.

George Soros also recognized in financial markets and economics that uncertainty is due
to lack of information [251]. In the context of social sciences, it is more appropriate to
regard incomplete information as incomplete knowledge. Of course, in financial markets or
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economics, the problems are even more complicated since there are more sources of uncertain-
ties, such as the actions and psychological effects of the participants. They may be modeled
as nonlinear time-varying feedback systems.

1.4 Organization of the Book

There are several important questions the author attempts to address in this book:

• Does small posterior uncertainty imply accurate data fitting?
• What are the properties of a suitable model class for parametric identification?
• Does accurate data fitting imply a suitable model class for identification?
• What is the relationship among model sensitivity, posterior uncertainty and robustness of a

model class?
• Is it possible to obtain a model class that is powerful in data fitting and also robust to

measurement noise and modeling error?

In order to address these questions, this book proceeds with six chapters. Chapter 1 gives the
general introduction and literature review of applications in different disciplines of engineering.
The purpose for model updating is discussed and the types of uncertainty considered in this
book are also exploited.

Chapter 2 introduces the basic concepts of conditional probabilities and the Bayes’ Theorem.
Simple examples are given for illustration. Then, the Bayesian model updating framework will
be formulated for input–output data and the updated probability density function (PDF) is
derived. Model identifiability is introduced for different topology of the updated PDF. Monte
Carlo simulation and Markov Chain Monte Carlo simulation are introduced. Comments will
be made on the deterministic and probabilistic approaches. Linear and nonlinear regression
problems will be considered. Then, several applications are presented to demonstrate the fun-
damental ideas and the efficacy of the Bayesian approach. First, a Bayesian method is derived
to investigate the temperature effect on the modal frequencies of buildings. Measurements
of a 22-story building for six months are used for the investigation. By dimensional analy-
sis, the relationship between the squared modal frequencies and temperature is parabolic and
the uncertain coefficients are obtained by the Bayesian approach. The second application is
on the selection of noise parameters for the Kalman filter. The latter is well known for state
estimation and parametric identification but the noise parameters are usually assigned by the
user’s judgement. Here, the Bayesian approach will be applied to select these parameters. A
half-or-double algorithm will be presented for the optimization problem. The third applica-
tion is on an ambient air quality predictive system by use of the extended Kalman filter. A
semi-empirical time-varying air quality predictive system is introduced and real ambient air
quality and meteorological data will be used for identification of the uncertain parameters. The
performance of this system is compared with artificial neural networks.

Chapters 3 and 4 introduce two recently developed Bayesian methods for updating the
mathematical models of dynamical systems. Chapter 3 presents the Bayesian spectral density
approach. The spectral density estimator is defined to take into account of the aliasing and
leakage effect. The statistical properties of the spectral density estimator are examined and
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the posterior PDF can then be obtained. The information entropy method is introduced for
optimal placement of sensors. The duffing oscillator is used to demonstrate the methodology
for nonlinear model updating. It turns out that the probabilistic method is useful in solving the
originally unidentifiable problem. Then, the method is applied for structural health monitoring
of the East Asian Hall at the University of Macau during two severe typhoons in 2008. It was
observed that the modal frequencies of the building were reduced by a notable percentage but
the reduction could be recovered after the typhoons. The last application focuses on hydraulic
jump. The Bayesian spectral density approach was applied to identify the frequency of the
surface roller in different types of hydraulic jumps.

The Bayesian time-domain approach is introduced in Chapter 4 for random input. An exact
formulation is first presented for stationary response and the computational difficulties in
applying this formulation will be pointed out. Then, an approximated expansion of the like-
lihood function is introduced to render the computation of the posterior PDF feasible. This
method is applicable for multi-degree-of-freedom linear systems subjected to stationary or
non-stationary input. An application on modal updating (i.e., identification of modal quanti-
ties such as natural frequencies, modal damping ratios and mode shapes) with unmeasured
non-stationary earthquake ground motion is used for demonstration. Comparison in terms
of computational efficiency, accuracy and applicability will be given between the frequency-
domain and time-domain approaches. A brief introduction is given for extended readings on
other Bayesian methods developed recently by the author and his collaborators.

Chapter 5 addresses the problem of model updating with eigenvalue–eigenvector measure-
ments. The generalized eigenvalue problem is considered and the posterior PDF of the model
parameters is derived. Solution of the nonlinear optimization problem is obtained by solving a
series of linear optimization problems and a tailor-made iterative algorithm is introduced. There
is no requirement to match the measured modes with the model modes, which is a difficult
task required by most existing methods. The Bayesian framework allows for quantification of
the uncertainty of the estimation. Applications on finite-element model updating and structural
health monitoring with a building model and a three-dimensional structural frame are used for
demonstration.

In the previous chapters, the problem of parametric identification was considered for a given
class of models with uncertain parameters. However, selection of a suitable class of models for
identification is very important in practice and this is addressed in Chapter 6. The Bayes’ theo-
rem is used to derive the relative plausibility of some given model classes. It turns out that the
plausibility of a model class depends on its evidence, which quantifies how likely the data can
be obtained given a model class. Expressions are given using asymptotic expansion for globally
identifiable cases. Comparisons with the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) are provided analytically. Then, the physical significance of the
evidence will be elaborated in detail. The transitional Markov Chain Monte Carlo simulation
is introduced to compute the evidence for general cases regardless of the identifiability. Linear
and nonlinear regression problems will be revisited for model class selection consideration.
Special treatment is introduced for evaluation of the evidence integral. Finally, the Bayesian
model class selection method is applied to two problems in civil engineering. The first appli-
cation is to determine the number of modes to be included in modal updating for a building.
The Bayesian model class selection approach is applied in conjunction with the Bayesian
spectral density approach. The second application is on the selection of seismic attenuation
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prediction model class. There are several well-known seismic attenuation prediction models
(e.g., Boore–Joyner–Fumal) and the Bayesian method is used to select a proper model class
for this application. Candidates of model classes will be generated and they will be evaluated
by the Bayesian model class selection method with real strong motion records from China.
The physical significance of the most plausible empirical expression is also discussed. Finally,
prior distribution will be revisited and an interesting and inspirational example will be given
to conclude the book.



2
Basic Concepts and Bayesian
Probabilistic Framework

Keywords: Bayes’ theorem; conditional probability; information entropy; Kalman Filter;
Markov Chain Monte Carlo simulation; model identifiability; particulate matter; regression
problem; reliability; structural health monitoring

In this chapter, the basic concepts of conditional probability are introduced and the Bayes’
theorem will be immediately followed. Examples are given for different cases of discrete
events and continuous-valued parametric estimation. Then, the Bayesian model updating
framework is presented. Model identifiability issues will be exploited. Comments are given on
the comparison between deterministic and probabilistic methods. Challenges, difficulties and
advantages of probabilistic methods are addressed. Linear and nonlinear regression problems
will be illustrated. Since the topology of the updated probability density function can be very
complicated, an adaptive Markov Chain Monte Carlo simulation method is introduced to gen-
erate samples for the representation of the distribution. Finally, three applications are presented
to illustrate the fundamental ideas of Bayesian inference. First, a Bayesian method is derived
to construct the relationship between the squared fundamental frequency of buildings and the
ambient temperature. By observing the temperature effect on the length and Young’s modulus,
the relationship turns out to be quadratic if the building can be modeled as a beam. Six-month
measurement from a 22-story building is utilized and the Bayesian method estimates the coef-
ficients and their associated uncertainty. The second application is on the well-known Kalman
filter. It is also a Bayesian updating tool, that is useful for state estimation and parameter identi-
fication but the noise parameters are normally assigned by the user based on prior information
or experience. In this study, the Bayesian approach is used to estimate these parameters. The
last application is on ambient air quality prediction problems for PM10 concentration. An
online time-varying prediction system is developed and the Kalman filter is used to update
the system. With a properly chosen parametric model, the predictive system over-performs
the well-known artificial neural network, especially in predicting the data of high PM10
concentration.

Bayesian Methods for Structural Dynamics and Civil Engineering Ka-Veng Yuen
© 2010 John Wiley & Sons (Asia) Pte Ltd
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2.1 Conditional Probability and Basic Concepts

Use A and B to denote two events. The conditional probability of event A provided the
occurrence of event B is given by:

P(A|B) = P(A ∧ B)

P(B)
(2.1)

if P(B) > 0. (If P(B) = 0, then P(A ∧ B) = 0 and P(A|B) is meaningless.) The symbol ∧
denotes the logical operator and for two (or more) events so P(A ∧ B) denotes the probability
of the occurrence of both events.

The notion of conditional probability does not necessarily imply a reason–consequence
relationship and time–order relationship for two events. For example, it is no wonder that the
conditional probability that a person with cancer provided that he/she is under chemotherapy
is close to 1.0. (It is not strictly 1.0 due to incorrect diagnosis.) However, the high conditional
probability surely does not imply that chemotherapy is the reason for cancer. It is simply
due to the fact that only people with positive cancer screening results undergo chemotherapy.
If the conditional probability P(A|B) is large, there are three possibilities. (1) Event A is a
consequence of Event B, or opposite. In the chemotherapy example, cancer (A) is the reason
but not the consequence of undergoing chemotherapy (B). (2) There is a higher level event C
that induces both events A and B. For example, in Macao, the probability of a heavily traffic
jammed day, provided good ambient air quality, is high. Obviously, there is no direct reason–
consequence relationship between these two events. Note that local emission by vehicles is not
the main source for the ambient/background pollutants in Macao though it affects seriously
the air quality at the street level. However, a good ambient air quality day and a heavily
traffic jammed day are consequences of a heavily raining day as the precipitation washes out
the pollutants from the air, and a heavily raining day triggers a heavily traffic jammed day.
(3) There are more than one higher level or intermediate events in the reason–consequence
tree for events A and B. This is a combination/extension of cases 1 and 2.

The law of total probability is very useful in the context of conditional probability. If an
event A is subdivided into N (either finite or countably infinite) mutually exclusive events,
A1, A2, . . . , AN , then the probability of another event B is given by [177]:

P(B) =
N∑

n=1

P(B ∧ An) =
N∑

n=1

P(B|An)P(An) (2.2)

for a mutually exclusive partitioning of the event A, i.e., An ∧ An′ = φ, if n /= n′ and A =
N∨

n=1
An. The symbol ∨ denotes the logical operator or for two (or more) events so P(A ∨ B)

denotes the probability of the occurrence of at least one of the events.
The continuous analogy of the law of total probability is also commonly used. In this case,

the probability of event B can be expressed as:

P(B) = E[P(B|X)] ≡
∫ ∞

−∞
P(B|X)p(X)dX (2.3)

where E[.] denotes the mathematical expectation and p(X) is the probability density function
(PDF) that describes the (real) random variable X. This is valid because the real axis can be
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subdivided into infinitely many intervals which do not have intersection. Then, the events of
the random variable X falling into different intervals are mutually exclusive.

Furthermore, it can also be applied to (real) random variables:

p(Y ) = E[p(Y |X)] =
∫ ∞

−∞
p(Y |X)p(X)dX (2.4)

where p(Y |X)p(X) = p(X, Y ) is the joint PDF of X and Y . Therefore, p(Y ) is simply the
marginal PDF of Y .

2.1.1 Bayes’ Theorem for Discrete Events

By exchanging the role of events A and B in Equation (2.1) and using the fact that P(A ∧ B) =
P(B ∧ A), the Bayes’ theorem can be obtained:

P(A|B) = P(B|A)P(A)

P(B)
(2.5)

if P(B) > 0. If the event A is partitioned into N mutually exclusive events, A1, A2, . . . , AN ,
the probability P(B) in the denominator can be replaced by using Equation (2.2):

P(An|B) = P(B|An)P(An)
N∑

n=1
P(An)P(B|An)

(2.6)

for n = 1, 2, . . . , N.

Example. Medical Screening Test
Consider a rare virus and its screening test data. Use C and N to denote a carrier and a non-
carrier of this virus. Also, use ‘+’ and ‘−’ to denote a person with positive and negative testing
results, respectively. It is known that the number of carriers is 0.5% of the whole population of
the city, i.e., P(C) = 0.005. Laboratory results show that this screening test has a probability of
0.3% showing false positive among all the non-carriers, i.e., P(‘+’|N) = 0.003. Furthermore,
0.6% of the testing results are positive, i.e., P(‘+’) = 0.006.

The false positive rate is defined as the probability of non-carriers among all the positive
testing results. By using the Bayes’ theorem, it can be estimated as follows:

false positive rate ≡ P(N|‘+’) = P(‘+’|N)P(N)

P(‘+’)

= P(‘+’|N)[1 − P(C)]

P(‘+’)

= 0.003(1 − 0.005)

0.006

= 0.4975

In other words, this is the probability of wrong detection among all the positive testing re-
sults. Even though the test appears to be accurate in the sense that the conditional probability
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P(‘+’|N) is small, the false positive rate is close to 50% and it is a well-known indicator
for the Type I error. Similarly, the conditional probability P(N|‘−’) can be computed by
Equation (2.5):

P(N|‘−’) = P(‘−’|N)P(N)

P(‘−’)

= [1 − P(‘+’|N)][1 − P(C)]

1 − P(‘+’)

= (1 − 0.003)(1 − 0.005)

1 − 0.006

= 0.9980

By using the definition of conditional probability in Equation (2.1), the probability of the
joint events can be obtained:

P(N ∧ ‘+’) = P(‘+’|N)P(N) = P(‘+’|N)[1 − P(C)] = 0.003(1 − 0.005) = 0.002 985

P(N ∧ ‘−’) = P(‘−’|N)P(N) = [1 − P(‘+’|N)][1 − P(C)]

= (1 − 0.003)(1 − 0.005) = 0.992 015

Furthermore, the probability of the other two joint events can be obtained by the law of total
probability:

P(C ∧ ‘+’) = P(‘+’) − P(N ∧ ‘+’) = 0.006 − 0.002 985 = 0.003 015

P(C ∧ ‘−’) = P(‘−’) − P(N ∧ ‘−’) = (1 − 0.006) − 0.992 015 = 0.001 985

These results are summarized in Table 2.1 and different conditional probabilities and rates
can be computed using this table. For example, the sensitivity is defined as the probability of
correct detection among all the carriers:

sensitivity ≡ P(‘+’|C) = P(C ∧ ‘+’)

P(C)
= 0.003 015

0.005
= 0.603

On the other hand, the specificity is defined as the probability of correct diagnosis among all
the non-carriers:

specificity ≡ P(‘−’|N) = P(N ∧ ‘−’)

P(N)
= 0.994

0.995
= 0.998 99

Table 2.1 Distribution of the virus screening test

Actual status\Testing result ‘+’ ‘−’ Sum

C 0.003 015 0.001 985 0.005
N 0.002 985 0.992 015 0.995
Sum 0.006 0.994 1.000



Concepts and Bayesian Probabilistic Framework 15

The sensitivity indicates the probability for picking up the true carriers while the specificity
denotes the probability of a correct negative testing result for a virus-free person. Reliable
results are anticipated for the screening tests with sensitivity and specificity close to unity.
However, this is very difficult to achieve for a rare virus. The low value of sensitivity in this
case implies a substantial probability of failure in detecting a virus-carrier (38.7%).

Finally, similar to the false positive rate, the false negative rate can be computed:

false negative rate ≡ P(C|‘−’) = P(C ∧ ‘−’)

P(‘−’)
= 0.001 985

0.994
= 0.001 997

and it is commonly used to indicate the level of Type II error.

2.1.2 Bayes’ Theorem for Continuous-valued Parameters by Discrete Events

For continuous-valued uncertain parameters θ = [θ1, θ2, . . . , θN ]T , the concern is to update
their probability density function. Consider a neighborhood around θ0 = [θ10, θ20, . . . , θN0]T ,
that is a hypercube in the parameter space �:

C =
{

θ10 − �θ1

2
< θ1 < θ10 + �θ1

2
, θ20 − �θ2

2
< θ2 < θ20 + �θ2

2
, . . . ,

θN0 − �θN

2
< θN < θN0 + �θN

2

}
(2.7)

The event B in Equation (2.5) is defined as the occurrence of the parameter vector θ falling
into this hypercube. For small �θ1, �θ2,. . . ,�θN , the probability of event B is:

P(B) = p(θ)
N∏

l=1

�θl (2.8)

where p(θ) = p(θ = θ0) is the joint PDF of the uncertain parameter vector θ. Similarly, the
conditional probability is given by P(B|A) = p(θ|A)

∏N
l=1 �θl. Then, the Bayes’ theorem in

Equation (2.5) is converted into another form:

p(θ|A) = P(A|θ)p(θ)

P(A)
(2.9)

This form is applicable to the identification of continuous-valued uncertain parameters with
observation of discrete events and p(θ|A) is regarded as the updated PDF or posterior PDF
of the parameter vector θ.

Example. Imperfect dice
An imperfect dice was drawn independently for N times whereas ‘1’ appeared N1 times. The
aim here is to update the probability of the occurrence of ‘1’ in a single draw (denoted as
P1) and this can be achieved by the Bayes’ theorem. The conditional PDF of the uncertain
parameter P1 given the value of N1 is:

p(P1|N1) = P(N1|P1)p(P1)

P(N1)
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The probability P(N1) in the denominator serves as a normalizing constant. Given N and P1,
the probability for a particular number of occurrences is:

P(N1|P1) = N!

N1!(N − N1)!
P

N1
1 (1 − P1)N−N1

In order to establish the updated PDF for P1, a triangular distribution is used for the prior PDF:

p(P1) =
{

12P1 if P1 ∈ [0, 1/6]

12/5(1 − P1) if P1 ∈ (1/6, 1]

which is a spread distribution over the support [0, 1]. The peak of the PDF occurs at P1 = 1/6,
which is taken from a perfect dice since no measurement is available at the stage of constructing
the prior distribution. The updated PDF for P1 is shown in Figure 2.1 with N = 200 and
N1 = 39. The most probable value, mean, and standard deviation of the estimate are 0.194,
0.198 and 0.027, respectively. In the view point of frequentists, this probability is simply
39/200 = 0.195.

Then, consider a larger number of draws (N = 1000) and ‘1’ appeared 149 times. By using
the Bayes’ theorem, the updated PDF for P1 is shown in Figure 2.2. The most probable value,
mean, and standard deviation of the estimate are 0.150, 0.151 and 0.011, respectively. This
distribution concentrates in a narrower range due to the extra information gained from the
additional samples. With the updated PDF, different confidence intervals can be constructed
for the uncertain parameter P1.
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Figure 2.1 Posterior PDF p(P1|N1), N = 200



Concepts and Bayesian Probabilistic Framework 17

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

P1

p(
P

1|
N

1)

Figure 2.2 Posterior PDF p(P1|N1), N = 1000

2.1.3 Bayes’ Theorem for Discrete Events by Continuous-valued Parameters

The reciprocal form of Equation (2.9) can be obtained easily for the updated probability of an
event with measurement of continuous-valued variables:

P(A|θ) = p(θ|A)P(A)

p(θ)
(2.10)

This form can be used to update the probability of events given the measurement of continuous-
valued variables.

Example. Interpretation of Test Results
An aptitude test is designed to assess students’ capability for a particular subject and the top 5%
students are defined as having excellent command. From previous experience, it is known that
the distribution of the scores, θ, of all the excellent students follows a log-normal distribution:

p(θ|A) = 1√
2πσθ

exp

[
− (ln θ − μ)2

2σ2

]
(2.11)

with mean 550 and standard deviation 12. In order to determine the values of the parameters
μ and σ2 in the distribution, the expressions for the mean and variance are derived:

M = E[θ|A] = exp
(
μ + σ2/2

)
(2.12)
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and

V = E[(θ − E[θ])2|A] =
[
exp (σ2) − 1

]
exp (2μ + σ2) (2.13)

Therefore, the parameters μ and σ2 can be computed as follows:

μ = ln

(
M2

√
V + M2

)
= 6.3097 (2.14)

and

σ2 = ln

(
V + M2

M2

)
= 4.7592 × 10−4 (2.15)

On the other hand, the scores of the rest of the students (group B) also follow the log-normal
distribution with mean 480 and standard deviation 15 so the parameters are μB = 6.1733 and
σ2

B = 9.7609 × 10−4 for this group. Then, by using the law of total probability, the score
distribution of all students is given by:

p(θ) = p(θ|A)P(A) + p(θ|B)P(B)

= 1

20
√

2πσθ
exp

[
− (ln θ − μ)2

2σ2

]
+ 19

20
√

2πσBθ
exp

[
− (ln θ − μB)2

2σ2
B

]
(2.16)

Figure 2.3 shows the probability distribution of the scores for top students (solid line) and
ordinary students (dashed line). Figure 2.4 shows the unconditional score distribution for all
students.

By the Bayes’ theorem in Equation (2.10), one can update the probability of a student with
excellent command of the subject given his/her test score:

P(A|θ) =
{

1 + 19σ

σB

exp

[
(ln θ − μ)2

2σ2 − (ln θ − μB)2

2σ2
B

]}−1

(2.17)

and this is shown in Figure 2.5. By this figure, different confidence intervals can be constructed
for a student to be classified as having excellent command of the subject. For example, a student
who scored 533 or above has 90% probability to have excellent command of the subject. This
threshold value may be smaller than intuition as it is significantly smaller than the mean of the
group. However, the probability for an ordinary student to achieve a score of 533 or above is
only 0.038%.

2.1.4 Bayes’ Theorem between Continuous-valued Parameters

In most engineering applications, the updating concern is on continuous-valued uncertain pa-
rameters with measurements of continuous-valued variables. Even though there is quantization
for the measurements, it is more convenient to treat them as continuous-valued variables and
probability density functions are used to characterize their statistical behavior. With the same
treatment for event B, event A can also represent the occurrence of another parameter vector ψ
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Figure 2.3 Conditional probability density functions of the scores
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Figure 2.5 Updated probability for different scores

falling into a hypercube. Then, the Bayes’ theorem gives the expression for the updated PDF
of the parameter vector θ:

p(θ|ψ) = p(ψ|θ)p(θ)

p(ψ)
(2.18)

This form with probability densities is useful for most engineering applications and the method-
ologies presented in this book are built on it. The vector θ represents the uncertain parameters
for identification and the vector ψ represents the measurements of the system. Further discus-
sion will be given in the following sections.

2.1.5 Bayesian Inference

In science and engineering problems, there are various uncertain parameters necessary to
be determined for modeling and other purposes. The Bayes’ theorem offers the possibility
for inferencing uncertain models/systems from their measurements. There are two levels of
system identification. The first is parametric identification, in which a class of mathematical
models for a particular physical phenomenon or system is given with unknown parameters
to be identified. The second level deals with the selection of a suitable class of mathematical
models for parametric identification. This is significantly more difficult but more important
than the first level since parametric identification results will be by no means meaningful if
one fails to obtain a suitable class of models. However, due to the difficulty of this problem,
it is usually determined by user’s judgement. Chapters 2–5 focus on parametric identification
and Chapter 6 addresses the problem of model class selection.
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Use D to denote the measured data of a system and consider it as the vector ψ in
Equation (2.18). Then, the updated/posterior probability density function (PDF) of the pa-
rameters θ is:

p(θ|D, C) = κ0p(D|θ, C)p(θ|C) (2.19)

where C denotes the class of probabilistic and physical models/rules used for the problem of
concern and κ0 = 1/p(D|C) is a normalizing constant such that integrating the right hand side
over the parameter space � yields unity:

∫

�

p(θ|D, C)dθ = κ0

∫

�

p(θ|C)p(D|θ, C)dθ = 1 (2.20)

The likelihood function p(D|θ, C) represents the contribution of the measured data in estab-
lishing the posterior distribution. It reflects how likely the measurements are observed from
the model with a particular set of parameters. The likelihood function can be constructed given
the class of probabilistic and physical models of the problem and it is the key of Bayesian
updating. If a large amount of measurement is available, the likelihood function will be the
dominant factor for the Bayesian inference.

2.1.5.1 Prior Distributions

The prior distribution p(θ|C) denotes the prior information of the parameters and it is based on
previous knowledge or user’s judgement. In some applications, the prior distribution is treated
as a constant and it is absorbed into the normalizing constant but this type of prior distribution
does not satisfy the property of the PDF that its integral throughout the parametric space is
unity. In general, a prior distribution that does not satisfy this property is referred to as an
improper prior. Using a constant improper prior distribution yields the maximum likelihood
solution.

Another popular choice is the class of conjugate prior distributions. A prior distribution
is said to be conjugate to a class of likelihood functions p(D|θ, C) if the resulting posterior
distributions p(θ|D, C) are in the same family as the prior distribution [214]. For example, let’s
say the likelihood function has the form of exponential distribution (of x):

p(x|θ, C) = αθ exp (−θx) (2.21)

where x is the measurement and θ is the uncertain parameter for identification. Use Gamma
distribution as the prior distribution:

p(θ|C) = θk−1 exp (−θ/α)

αk	(k)
(2.22)

where k > 0 and α > 0 are the shape and scale parameters that characterize the distribution.
The Gamma function is given by:

	(k) =
∫ ∞

0
xk−1 exp (−x)dx (2.23)
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Using integration by parts, it can be easily shown that 	(k + 1) = k	(k), ∀k > 0 and 	(k) =
(k − 1)! if k is a positive integer.

By the Bayes’ theorem, the posterior PDF of θ is given by:

p(θ|x, C) = κ0θ
k exp [−θ(x + 1/α)] (2.24)

which remains to be Gamma distributed for θ with shape parameter k + 1 and scale parameter
(x + 1/α)−1. Therefore, the Gamma distribution is the conjugate prior distribution for the
exponential type of likelihood functions. Conjugate prior distributions are popular because the
prior and posterior distributions have the same form so it is easy to quantify the contribution
of the updating process by the data.

The maximum entropy method is a theoretically sound approach, especially for the case if the
bounds of the parameters are known. The uncertainty of a random variable/vector can be quanti-
fied by the information entropy that depends on its probability density function [115, 117, 233]:

H(p) ≡ −E[ln p(θ)] = −
∫

�

p(θ) ln p(θ)dθ (2.25)

where � is the domain of the parameter vector θ. The maximum entropy prior distribution can
be found by maximizing the information entropy with the prescribed constraint on the bounds
of the parameters. This approach is particularly suitable for the case that only the bounds of
the random variable are known since the resultant prior distribution carries the least amount
of information among all admissible distributions compatible with the boundary conditions.
Further comments on the selection of prior distribution will be given in Chapter 6.

Example. Maximum Entropy Distribution for Given Mean and Variance
In this example, the maximum entropy distribution is to be determined for given values of mean
μ and variance σ2. This distribution can be found by maximizing the information entropy in
Equation (2.25) among all the distributions with the target mean and variance. This can be
achieved by using the Lagrange multiplier. First, define the Lagrange function L as follows:

L(p) = −
∫ ∞

−∞
p(θ) ln p(θ)dθ + λ1

(∫ ∞

−∞
p(θ)dθ − 1

)
+ λ2

(∫ ∞

−∞
θp(θ)dθ − μ

)

+ λ3

(∫ ∞

−∞
(θ − μ)2p(θ)dθ − σ2

)

=
∫ ∞

−∞

{
−p(θ) ln p(θ) +

[
λ1 + λ2θ + λ3(θ − μ)2

]

× p(θ) − (λ1 + λ2μ + λ3σ
2)f (θ)

}
dθ

(2.26)

where f is an arbitrary function that satisfies
∫∞
−∞ f (θ)dθ = 1. Note that maximizing the

information entropy is equivalent to maximizing the Lagrange function if the contraints on
the mean and variance are satisfied. Then, a function F is defined as the integrand of the last
integral of Equation (2.26):

F (p) = −p(θ) ln p(θ) +
[
λ1 + λ2θ + λ3(θ − μ)2

]
p(θ) − (λ1 + λ2μ + λ3σ

2)f (θ) (2.27)
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The necessary condition for an extremum to exist is that the variation of the Lagrange function
L is zero, i.e., δL = 0. This is equivalent to solving ∂F/∂p = 0:

− ln p(θ) − 1 + λ1 + λ2θ + λ3(θ − μ)2 = 0 (2.28)

and the solution is given by

p(θ) = exp [λ3θ
2 + (λ2 − 2λ3μ)θ + (λ3μ

2 + λ1 − 1)] (2.29)

By the three mathematical constraints on the volume of the distribution, the mean and variance
of the random variable, it can be easily shown that λ1 = 1 − ln (

√
2πσ), λ2 = 0 and λ3 =

−1/2σ2. Therefore, for given values of mean and variance, the probability distribution that
has the extremum information entropy is:

p(θ) = 1√
2πσ

exp

[
− (θ − μ)2

2σ2

]
(2.30)

which is a Gaussian distribution. Furthermore, the second derivative of the function F is:

∂2F

∂p2 = − 1

p(θ)
< 0 (2.31)

so the resultant Gaussian distribution is the maximum entropy solution. In this case, the infor-
mation entropy for a Gaussian distribution is given by:

H = −1

2
(1 + ln 2π) + ln σ (2.32)

If the random variable is known to lie within the interval [a, b] with given mean μ and
variance σ2, the maximum entropy solution will be a truncated Gaussian distribution:

p(θ) = 1
√

2πσ

[
φ

(
b − μ

σ

)
− φ

(
a − μ

σ

)] exp

[
− (θ − μ)2

2σ2

]
, θ ∈ [a, b] (2.33)

where φ is the cumulative distribution function (CDF) of the standard Gaussian random vari-
able:

φ(θ) = 1√
2π

∫ θ

−∞
exp

(
−α2

2

)
dα (2.34)

There is a one-to-one mapping between this function and the error function:

φ(θ) = 1

2
+ 1

2
erf

(
θ√
2

)
(2.35)

where the error function is given by:

erf (x) = 2√
π

∫ x

0
exp

(
−α2

)
dα (2.36)

and it can be computed using the function ‘erf’ in MATLAB® [171].
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Another useful special case is that the random variable lies within a finite interval [a, b]
without knowing the mean, variance or other moments. The above method can be applied and
the Lagrange function in Equation (2.26) will be modified to exclude the terms with λ2 and
λ3. It turns out that the maximum entropy distribution is the uniform distribution in [a, b]:

p(θ) = 1

b − a
, if θ ∈ [a, b] (2.37)

and zero otherwise.

2.1.6 Examples of Bayesian Inference

Example. Gaussian Random Variable
Consider a Gaussian random variable X with mean μ and variance σ2. These two parameters are
unknown and they are the uncertain parameters for identification. Independent measurements
of the random variable X are available: D = {x1, x2, . . . , xN} so the likelihood function is
given by:

p(D|μ, σ2, C) =
N∏

n=1

p(xn|μ, σ2, C)

=
N∏

n=1

1√
2πσ

exp

[
− (xn − μ)2

2σ2

]
(2.38)

= 1

(
√

2πσ)N
exp

[
− 1

2σ2

N∑
n=1

(xn − μ)2

]

where the model class C denotes the Gaussian probabilistic model for the random variable.
Improper prior is used for the uncertain parameters and it is absorbed into the normalizing
constant. In this case, the statistical inference will rely solely on the likelihood of the data and
the posterior PDF is given by:

p(μ, σ2|D, C) = κ0

σN
exp

[
− 1

2σ2

N∑
n=1

(xn − μ)2

]

= κ0

σN
exp

[
− 1

2σ2

(
Nμ2 − 2μ

N∑
n=1

xn +
N∑

n=1

x2
n

)] (2.39)

where κ0 is the normalizing constant. This solution is the maximum likelihood solution. Note
that the joint posterior PDF is non-Gaussian although the conditional PDF p(μ|σ2,D, C) is
Gaussian.

To obtain the joint posterior PDF, it requires only the values of
∑N

n=1 xn and
∑N

n=1 x2
n

or, equivalently, the sample average and sample variance. The most probable values of the
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parameters can be obtained by maximizing the posterior PDF or, equivalently, minimizing the
objective function:

J(μ, σ2|D, C) = N ln σ + 1

2σ2

N∑
n=1

(xn − μ)2 (2.40)

which is the negative logarithm of the posterior PDF without including the constant. By solving
∂J(μ, σ2|D, C)/∂μ = 0, the most probable value (mode) for the mean parameter μ is:

μ
 = 1

N

N∑
n=1

xn (2.41)

which is the sample average. Equation (2.39) states that the conditional PDF p(μ|σ2,D, C)
is Gaussian with mean μ
 and variance σ2/N. The conditional mean does not depend on the
value of σ2 but the conditional variance does.

On the other hand, the marginal PDF for μ is given by:

p(μ|D, C) =
∫ ∞

0
p(μ, σ2|D, C)dσ2

=
∫ ∞

0

κ0

σN
exp

[
− 1

2σ2

N∑
n=1

(xn − μ)2

]
dσ2 (2.42)

= κ0	

(
N

2
− 1

)[
1

2

N∑
n=1

(xn − μ)2

]− N
2 +1

which is non-Gaussian but it approaches to Gaussian for large N.
Similarly, the most probable value (mode) for the variance parameter σ2 can be obtained by

solving ∂J(μ, σ2|D, C)/∂σ2 = 0:

σ2
 = 1

N

N∑
n=1

(xn − μ
)2 (2.43)

which is the (biased) sample variance.
Again, by observing Equation (2.39), the conditional PDF p(σ2|μ,D, C) follows the inverse

Gamma distribution, denoted by IG(α, β):

p(X) = βα

	(α)Xα+1 exp

(
− β

X

)
(2.44)

with the shape and scale parameters given by

α = N

2
− 1

β = 1

2

N∑
n=1

(xn − μ)2

(2.45)
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and 	(.) is the Gamma function given in Equation (2.23). If α > 2, the mean and variance of
this distribution are:

E[X] = β

α − 1
(2.46)

and

E[(X − E[X])2] = β2

(α − 1)2(α − 2)
(2.47)

The marginal PDF for σ2 is:

p(σ2|D, C) =
∫ ∞

−∞
p(μ, σ2|D, C)dμ

=
∫ ∞

−∞
κ0

σN
exp

[
− 1

2σ2

N∑
n=1

(xn − μ)2

]
dμ (2.48)

= κ0

σN−1

√
2π

N
exp

(
−Nσ2


2σ2

)

which is also inverse Gamma IG(α, β) with shape and scale parameters given by:

α = N − 3

2
; β = N

2
σ2
 (2.49)

By using the fact that p(X) in Equation (2.44) is a PDF, the following definite integral has
a closed-form solution:

∫ ∞

0
X−α−1 exp(−β/X)dX = β−α	(α) (2.50)

and this can be used to determine the normalizing constant:

κ0 =
(

N

2

)N
2 −1 (σ
)N−3

	
(

N−3
2

)√
π

(2.51)

Consider 10 samples of the random variable X, i.e., N = 10, with sample average μ
 =
1
N

∑N
n=1 xn = 5 and sample variance σ2
 = 1

N

∑N
n=1(xn − μ
)2 = 4. The posterior PDF can

be computed by Equation (2.39) and it is shown in Figure 2.6. It is a skewed distribution and
its contours with 75%, 50%, 25%, 10% and 1% of the maximum probability density value are
shown in Figure 2.7. The posterior PDF is symmetric about the line μ = μ
(= 5).

Then, consider 400 samples (N = 400) with the same sample average and sample variance.
The posterior PDF is shown in Figure 2.8. By taking a larger number of data points, the
posterior PDF concentrates in a significantly smaller region and the distribution becomes
closer to Gaussian. This can be visualized by the oval-like contours in Figure 2.9.
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Figure 2.6 Posterior PDF

Example. Exponential Random Variable
The PDF of an exponential random variable X with mean μ is given by:

p(X) = 1

μ
exp

(
−X

μ

)
(2.52)

This random variable can also be treated as a scaled Chi-square random variable with two
degrees of freedom. Specifically, X can be expressed as:

X = μ

2
(Y2

1 + Y2
2 ) (2.53)

μ

σ
2
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Figure 2.7 Contours of the posterior PDF
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Figure 2.8 Posterior PDF (N = 400)

where Y1 and Y2 are independent standard Gaussian random variables. In this exam-
ple, the mean parameter is unknown and it is the uncertain parameter for identification.
The variance of this random variable is given by σ2 = μ2. Independent measurements of
X are available: D = {x1, x2, . . . , xN} (with N ≥ 3) so the likelihood function is given
by:

p(D|μ, C) =
N∏

n=1

p(xn|μ, C) =
N∏

n=1

1

μ
exp

(
−xn

μ

)
= 1

μN
exp

(
− 1

μ

N∑
n=1

xn

)
(2.54)
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Figure 2.9 Contours of the posterior PDF (N = 400)
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Uniform prior in a sufficiently large interval is used for the uncertain parameter so that the
Bayesian inference relies solely on the likelihood of the data:

p(μ|C) =

⎧⎪⎨
⎪⎩

1

μu − μl

, if μ ∈ [μl, μu]

0, otherwise

(2.55)

Then, the posterior PDF of the parameter can be readily obtained:

p(μ|D, C) =

⎧⎪⎪⎨
⎪⎪⎩

κ0

(μu − μl)μN
exp

(
− 1

μ

N∑
n=1

xn

)
, if μ ∈ [μl, μu]

0, otherwise

(2.56)

which is a truncated inverse Gamma distribution with α = N − 1 and β = ∑N
n=1 xn. If the

interval [μl, μu] covers a sufficiently large range, the mean of the distribution can be approx-
imated by:

E[μ|D, C] ≈ 1

N − 2

N∑
n=1

xn (2.57)

Furthermore, the normalizing constant is given by:

κ0 ≈ (μu − μl)

	(N − 1)

N∑
n=1

xn (2.58)

The error in this approximation is due to the truncation of the distribution and the correct value
of κ0 should be larger.

By solving ∂p(μ|D, C)/∂μ = 0, the most probable value (mode) for the mean parameter μ

is equal to the sample average:

μ
 = 1

N

N∑
n=1

xn (2.59)

provided that 1
N

∑N
n=1 xn ∈ [μl, μu]. For a given value of the sample average, the posterior

PDF of the mean parameter μ is uniquely determined regardless of the individual values
of the samples. Other statistical moments may be utilized for validation of the selected
distribution. Consider N = 10 independent samples with sample average equal to 5.
The posterior PDF can be computed by Equation (2.56) and it is shown in Figure 2.10.
It is skewed with a long tail on the right side. However, if the number of data points
is increased to N = 100 with the same sample average, the posterior PDF depicted in
Figure 2.11 is more concentrated since more information for the uncertain mean param-
eter is obtained from the additional samples. Meanwhile, the distribution approaches to
Gaussian.
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Figure 2.10 Posterior PDF (N = 10)

Example. Occurrence Rate of an Event
Consider the problem of updating the occurrence rate of an event, such as a certain level of
earthquakes or typhoons in a particular region. The discrete Poisson distribution is a well-
known probabilistic model for this purpose and the probability of exactly k (≥ 0) occurrences
of an event in a specified time interval is given by:

P(k|λ) = λke−λ

k!
(2.60)
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Figure 2.11 Posterior PDF (N = 100)
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where λ is the occurrence rate. Assume that observations of N years are available and there
are k1, k2, . . ., kN occurrences in each of the years. By assuming that these occurrences in
different years are statistically independent, the posterior PDF of the occurrence rate λ is given
by:

p(λ|k1, k2, . . . , kN, C) = κ0p(λ|C)∏N
n=1 kn!

N∏
n=1

λkne−λ

kn!

= κ0p(λ|C) exp

(
−Nλ +

N∑
n=1

kn ln λ

) (2.61)

Here, a uniform prior distribution for the occurrence rate λ is used in a sufficiently large range
so the inference is contributed solely by the likelihood of the measurement. In this case, the
posterior PDF in Equation (2.61) is truncated Gamma distributed with shape parameter and
scale parameter given by:

α =
N∑

n=1

kn

β = N−1
(2.62)

By maximizing the posterior PDF with respect to λ, the most probable value of the occurrence
rate can be obtained from solving ∂p(λ|k1, k2, . . . , kN, C)/∂λ = 0:

λ
 = 1

N

N∑
n=1

kn (2.63)

The associated uncertainty of this estimate is completely described by the posterior PDF
shown in Figure 2.12 for N = 10 and 1

N

∑N
n=1 kn = 5. The mean and standard deviation of

the distribution are approximately 5.1 and 0.71, respectively.
Consider a special case of a rare event that did not happen in the previous N years. By using

the Poisson model again, the most probable value of the occurrence rate is equal to zero, i.e.,
λ
 = 0. However, this does not imply that the event will never happen. By Equation (2.61)
with an improper prior, the posterior PDF of λ is:

p(λ|k1 = 0, k2 = 0, . . . , kN = 0, C) = Ne−Nλ (2.64)

which is an exponential distribution. The expected value of λ is given by:

E[λ|D, C] = N−1 (2.65)

with variance N−2. This example demonstrates an important distinction between Bayesians
and frequentists. In the viewpoint of frequentists, the occurrence rate of this event cannot be
estimated (if not zero) since the relative frequency of the occurrence of this event is zero in
the observed duration, which is not sufficiently long. However, the Bayesian approach utilizes
the complete information of the data to estimate the plausibility of different values of the
occurrence rate.
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Figure 2.12 Posterior PDF p(λ|k1, k2, . . . , kN, C)

Example. Does Small Parametric Uncertainty Imply Good Data Fitting?
Consider a quantity Q and its two measured values: Q̂1 and Q̂2. By the specifications of
the instrument, it is known that the measurement noise for both data points is Gaussian with
zero mean and variance σ2

0 . Now, the value of Q is updated using the data by the Bayes’
theorem:

p(Q|Q̂1, Q̂2, C) = κ0(2πσ2
0 )−1 exp

[
− (Q − Q̂1)2 + (Q − Q̂2)2

2σ2
0

]

= κ0(2πσ2
0 )−1 exp

[
− (Q̂1 − Q̂2)2

4σ2
0

]
exp

⎡
⎢⎢⎢⎢⎢⎣

−

(
Q − Q̂1 + Q̂2

2

)2

σ2
0

⎤
⎥⎥⎥⎥⎥⎦

(2.66)

Here, an improper prior is used and it is absorbed into the normalizing constant. Also, the model
class C describes all the assumptions made for the measurements and the noise model. It is
clear that the posterior distribution for Q is Gaussian with mean (Q̂1 + Q̂2)/2. The variance
is σ2

0/2 and it does not depend on the values of Q̂1 and Q̂2.
Now, consider the case with Q̂1 = 1, Q̂2 = 5 and σ2

0 = 0.01. By Equation (2.66), the mean
and variance are 3 and 0.005, respectively. Figure 2.13 shows the posterior PDF for three cases:
(1) using Q̂1 only (the peak on the left hand side), (2) using Q̂2 only (the peak on the right
hand side), and (3) using both Q̂1 and Q̂2 (the peak in the middle). The posterior variance with
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Figure 2.13 Posterior PDF of Q with Q̂1 or Q̂2 or both

both data points is σ2
0/2 = 0.005 and the coefficient of variation is equal to 0.1/3

√
2 = 2.36%.

However, the data fitting is by no means a good one since the likelihood for each data point is
small, i.e., (

√
2π0.1)−1 exp (−22/0.02) = 5.52 × 10−87. Therefore, the maximum likelihood

value for using both Q̂1 and Q̂2 will be 3.05 × 10−173.
If σ2

0 is reduced by half to 0.005, the posterior variance of Q will be even smaller, i.e., 0.0025,
and the coefficient of variation is 0.05/3

√
2 = 1.18%. However, the maximum likelihood

value will become 3.18 × 10−799. Therefore, small posterior uncertainty does not necessarily
associate with a large likelihood value or good fitting to the data. In this case, the smaller
posterior uncertainty is simply due to the underestimation of the measurement noise.

2.2 Bayesian Model Updating with Input–output Measurements

2.2.1 Input–output Measurements

In this section, the general Bayesian framework is presented. It was originally presented for
structural model updating using input–output measurements in Beck and Katafygiotis [19].
Consider a linear or nonlinear dynamical system with input–output relationship:

x(t) = ϕ(t; F, x(0), θm) (2.67)

where t denotes the time, x(t) ∈ RNd is the model response vector at time t, x(0) is the initial con-
dition, and F is an external input/excitation, which is assumed to be measured. The input–output
relationship is governed by the function ϕ, which is characterized by the model parameters
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θm. For static systems, the relationship in Equation (2.67) is reduced to x(t) = ϕ(F(t), θm)and
t denotes an index.

Assume that discrete response data are available at No(≤ Nd) observed DOFs, i.e., some
selected components of x(t) and/or their linear combinations. Use �t to denote the sampling
time step. Due to measurement noise and modeling error, referred to hereafter as prediction
error, the measured response yn ∈ RNo (at time t = n�t) will differ from the model response
Lox(n�t) corresponding to the measured degrees of freedom where Lo denotes an No × Nd

observation matrix, which is determined by the configuration of the sensing system. Therefore:

yn = Lox(n�t) + εn (2.68)

The prediction error is modeled as a discrete zero-mean Gaussian white noise vector process
ε, with εn ∈ RNo , and it satisfies the following correlation structure:

E
[
εnε

T
n′
] = �εδnn′ (2.69)

where E[.] denotes the mathematical expectation, �ε denotes the No × No covariance matrix
of the prediction error process ε and δnn′ denotes the Kronecker delta:

δnn′ =
{

1 if n = n′

0 if n /= n′ (2.70)

2.2.2 Bayesian Parametric Identification

Use θ to denote the parameter vector for identification. It includes the model parameters θm and
the parameters that determine the elements of the upper right triangular part of the prediction-
error covariance matrix �ε (symmetry defines the lower triangular part of this matrix).

The dynamic data D consists of the measured time histories at N discrete time steps of
the excitation and system response. Assume equal variances and stochastic independence for
the prediction errors of different channels of measurements so the covariance matrix for the
prediction errors is:

�ε = σ2
ε INo (2.71)

where INo is the No × No identity matrix. Then, the updated PDF of the uncertain parameters
in θ = [θT

m, σ2
ε ]T given the data D and model class C can be expressed as:

p(θ|D, C) = κ0p(θ|C)(2π)−
NNo

2 σ−NNo
ε exp

[
−NNo

2σ2
ε

Jg(θm;D, C)

]
(2.72)

where κ0 is a normalizing constant and p(θ|C) is the prior PDF of the uncertain parameters in
θ, expressing the user’s judgement about the relative plausibility of the values of the uncertain
parameters before the data are used. The goodness-of-fit function is given by:

Jg(θm;D, C) = 1

NNo

N∑
n=1

∣∣∣∣
∣∣∣∣yn − Lox(n�t; θm, C)

∣∣∣∣
∣∣∣∣
2

(2.73)
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where x(n�t; θm, C) is the model response based on the assumed class of models and the
model parameter vector θm while yn is the measured response at time n�t. Furthermore,
||.|| denotes the Euclidean norm (2-norm) of a vector. The most probable model parameter
vector θ
 is obtained by maximizing the posterior PDF in Equation (2.72). For large N or with
improper prior, this is equivalent to minimizing the goodness-of-fit function Jg(θm;D, C) in
Equation (2.73) over all possible values of θm:

θ

m = arg min

θm

Jg(θm;D, C) (2.74)

If Jg(θm;D, C) is known only implicitly, numerical optimization is needed to search
for the optimal model parameters and this can be done by the function ‘fminsearch’ in
MATLAB® [171].

The most probable value of the prediction-error variance in θ
 can be obtained also by
maximizing the posterior PDF:

∂p(θ|D, C)

∂σ2
ε

= 0 (2.75)

and the solution is available in closed form:

σ2
ε


 = min
θm

Jg(θm;D, C) = Jg(θ

m;D, C) (2.76)

2.2.3 Model Identifiability

The updated PDF in Equation (2.72) provides the complete description of the plausibility of
the model parameters but its topology may be very complicated in general, especially if there
are a large number of uncertain parameters so the distribution is difficult to be visualized.
Use Smod(θ0; F) to denote the set of all model parameters which give the same output at the
observed degrees of freedom as the model associated with θ0 and the input F.

A parameter θl of θ is model-identifiable [132] at θ
 for model class C and input F if there
exists a positive value εl such that:

θ ∈ Smod(θ
; F) ⇒ |θl − θ

l | > εl or θl = θ


l (2.77)

In other words, θ

l is uniquely specified within a neighborhood of each of its possible values

by F and D. There are three main categories of identifiability [132]:

1. A parameter θl of θ is globally model-identifiable at θ
 for model class C and input F if:

θ ∈ Smod(θ
; F) ⇒ θl = θ

l (2.78)

In other words, θ

l is uniquely specified by F and D. If θl is globally model-identifiable at

θ
, then it is also model-identifiable at θ
.
2. A parameter θl of θ is locally model-identifiable at θ
 for model class C and input F if it is

model-identifiable but not globally model-identifiable.
3. A parameter θl of θ is model-unidentifiable if it is not model-identifiable.
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For dynamic testing, it is the number of observed degrees of freedom, No, and their distribution
that are the essential factors for identifiability. On the other hand, increasing the number of data
points N does not increase the number of effective mathematical constraints, and hence the
identifiability. For example, an unidentifiable case is obtained with a 5-min measurement for
the identification of a structural model. Then, using a set of measurement of 10 min or longer
does not affect the identifiability but it reduces only the variances in some of the principle
directions.

For globally model-identifiable cases with large N [19], it turns out that the posterior PDF
p(θ|D, C) is approximately Gaussian and this can be explained as follows. The measurement
can be subdivided into a number of sub-records with equal length. Posterior PDFs utilizing
different sub-records exist and they are similar if different sets of records are associated with
similar condition (e.g., level of measurement noise, level of excitation, ...). By using the central
limit theorem, the posterior PDF utilizing the complete record is approximately Gaussian even
though the sub-records are not independent. Then, the mean is the optimal parameter vector θ


and the covariance matrix is equal to the inverse of the Hessian matrix of the objective function
J(θ) = − ln [p(D|θ, C)p(θ|C)] at θ
 (Appendix A):

H(l,l′)(θ
) = − ∂2

∂θlθl′
ln [p(θ|C)p(D|θ, C)]

∣∣∣∣
θ=θ


(2.79)

In practice, the prior distribution may be used as a regularizer [164, 169] to improve the
well-posedness of the inverse problem:

p(θ|C) = 1

(2π)
Nθ
2
∏Nθ

l=1 σl

exp

(
−1

2

Nθ∑
l=1

θ2
l

σ2
l

)
(2.80)

It is a Gaussian PDF with zero mean so it decays as the radial distance to the origin increases
in any direction. If there exist two or more models that fit the measurement equally well, using
this radially decaying prior distribution helps trimming down the set of the optimal parameters
to the one with the smallest 2-norm.

Example. Consider a class of models (set of matrices) C in which the matrices are parame-
terized as follows:

A(θ) =
[

θ1 + θ2 θ2

θ2 θ2

]
(2.81)

where θ = [θ1, θ2]T ∈ R2. The actual values for θ1 and θ2 are taken to be θ̃1 = θ̃2 = 1 so the
actual matrix is:

Ã =
[

2 1

1 1

]
(2.82)

The eigenvalue problem for this matrix is given by:

Ãφ = λφ (2.83)
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where λ and φ are the eigenvalue and eigenvector of the matrix Ã. The eigenvalues can be
found by solving the algebraic equation:

∣∣Ã − λI2
∣∣ = 0 (2.84)

where I2 is the 2 × 2 identity matrix. In this case, the actual eigenvalues are λ(1) =
3/2 − √

5/2 = 0.382 and λ(2) = 3/2 + √
5/2 = 2.618 and their associated eigenvectors

are [1, −(
√

5/2 + 1/2)]T and [1,
√

5/2 − 1/2]T , respectively. Now, identification of the
uncertain parameters in θ is proceeded with different types of eigenvalue–eigenvector
measurements.

Case 1: One measured eigenvalue
Assume that the smaller eigenvalue λ(1) is measured with 5% Gaussian measurement noise and
five independent measurements are taken: λ̂(1)

1 = 0.3860, λ̂(1)
2 = 0.3922, λ̂(1)

3 = 0.4157, λ̂(1)
4 =

0.3592, and λ̂
(1)
5 = 0.3615. To simplify the problem, the standard deviation of the measurement

noise is assumed known here and it is σ1 = 0.0191. In this case, the likelihood function can
be written as follows:

p(D|θ, C) = (2π)−
5
2 σ−5

1 exp

[
− 1

2σ2
1

5∑
n=1

(
λ(1)(θ) − λ̂(1)

n

)2
]

(2.85)

where λ(1)(θ) is the smaller model eigenvalue of the matrix A(θ) and λ̂(1)
n , n = 1, 2, . . . , 5,

are its measurements. Figure 2.14 shows the likelihood function p(D|θ, C) and the optimal
parameters are non-unique. This is an unidentifiable case since there exists a ridge on which the
likelihood function is maximized. Figure 2.15 shows the trajectory of (θ1, θ2) with maximum
value of p(D|θ, C) and the equation of this curve is given by:

λ̂(1)
2 − (θ1 + 2θ2)λ̂(1) + θ1θ2 = 0 (2.86)
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Figure 2.14 Likelihood function with one measured eigenvalue only
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Figure 2.15 Trajectory of (θ1, θ2) with maximum likelihood value (unidentifiable case)

where λ̂(1) = 0.2
∑5

n=1 λ̂(1)
n = 0.3849 is the average of the measurements of λ(1).

Case 2: Two measured eigenvalues
In addition to the smaller eigenvalue, the larger eigenvalues are also measured with 5%
measurement noise and they are λ̂

(2)
1 = 2.3614, λ̂

(2)
2 = 2.5877, λ̂

(2)
3 = 2.7070, λ̂

(2)
4 = 2.3875,

and λ̂
(2)
5 = 2.7272. Again, the standard deviations of the measurement noise are assumed

known and they are σ1 = 0.0191 and σ2 = 0.1309. In this case, the likelihood function is
given by:

p(D|θ, C) = (2πσ1σ2)−5 exp

[
− 1

2σ2
1

5∑
n=1

(
λ(1)(θ) − λ̂(1)

n

)2 − 1

2σ2
2

5∑
n=1

(
λ(2)(θ) − λ̂(2)

n

)2
]

(2.87)

and it is shown in Figure 2.16. There are two local maxima of equal probability density so it
is a locally identifiable case. Figure 2.17 shows the contours of p(D|θ, C) and it can be clearly
seen that the probability concentrates in the two regions around the local maxima. These
two local maxima lie on the trajectory in Figure 2.15. The additional measured eigenvalue
provides extra constraint in reducing the number of most probable values of the parameters
from infinity to two.

Case 3: One measured eigenvalue with the corresponding eigenvector
In this case, only the smaller eigenvalue is measured and its value is the same as in the previous
cases. In addition, the corresponding eigenvector is also measured. Note that the eigenvector can
be determined up to a scaling constant only because αφ is an eigenvector if φ is an eigenvector
and α ∈ R− {0}. Therefore, instead of using the eigenvector directly, the eigenvector compo-
nent ratio r ≡ φ

(1)
2 /φ

(1)
1 is utilized for identification and the five independent observations are:
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Figure 2.16 Likelihood function with both eigenvalues measured

r̂1 = −1.4594, r̂2 = −1.5993, r̂3 = −1.6730, r̂4 = −1.4755, and r̂5 = −1.6855. Again, the
standard deviations of the measurement noise are assumed known and they are σ1 = 0.0191
and σr = 0.0809. In this case, the likelihood function is given by:

p(D|θ, C) = (2πσ1σr)
−5 exp

[
− 1

2σ2
1

5∑
n=1

(
λ(1)(θ) − λ̂(1)

n

)2 − 1

2σ2
r

5∑
n=1

(r(θ) − r̂n)2

]
(2.88)

and it is shown in Figure 2.18. It is a globally identifiable case since there is a unique global
maximum of the likelihood function. Figure 2.19 shows its oval-like contours. Compared with
the previous case with two measured eigenvalues, it shows that it is not the number of measured
quantities but the effective mathematical constraints induced by the measurements to determine
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Figure 2.17 Contours of the likelihood function (locally identifiable case)
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Figure 2.18 Likelihood function with one measured eigenvalue and eigenvector
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Figure 2.19 Contours of the likelihood function (globally identifiable case)

model-identifiability. In both Case 2 and 3, two quantities were measured but one turned out
to be locally identifiable and the other globally identifiable.

2.3 Deterministic versus Probabilistic Methods

In most deterministic identification methods, important observable quantities are measured
(e.g., modal frequencies of a building for stiffness identification) and the uncertain model
parameters are obtained by minimizing a goodness-of-fit/error function of these measurements
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or their induced quantities:

Jg(θ) = F (θ;D, C) (2.89)

which is a measure of the data fitting error. One of the most popular approach is the least-squares
type of methods that minimize a weighted sum of squared error:

Jg(θ) = 1

N

N∑
n=1

wn[xn(θ) − yn]2 (2.90)

where xn(θ) and yn, n = 1, 2, . . . , N, are the model predicted quantities and their measure-
ments. The weightings wn, n = 1, 2, . . . , N, depend on the specific method and uniform
weightings are often chosen for simplicity. If the likelihood function happens to have the
form of Gaussian for the uncertain parameters, the optimal parameters by least-squares and
probabilistic methods are equivalent. In general, a deterministic approach assumes a particular
form of objective function that is compatible with a particular probability distribution function
even though it is not specified explicitly.

Probabilistic approaches, particularly the Bayesian approach, utilize the complete informa-
tion of the data for the statistical inference if the appropriate likelihood function is constructed
whereas deterministic methods usually bypass this issue. As a result, probabilistic methods
allow for the quantification of the uncertainty of the parametric estimation. Furthermore, us-
ing the appropriate probability distribution ensures the correctness of the optimal parameters.
Although Bayesian inference is attractive for allowing direct quantification of the uncertainty
of the parameter estimation, there are main challenges in developing Bayesian methods:

1. In some applications, it is difficult to obtain the likelihood function with an appropriate
choice of the type of probability distribution. This is not a trivial task since the probability
distribution of the random variables in establishing the likelihood function may be com-
plicated. For example, consider a random process x and its measurements at different time
steps with equal spacing: x1, x2, . . . , xN . The auto-correlation function can be estimated
by:

Rn ≡ 1

N − n

N−n∑
n′=1

xn′xn′+n (2.91)

where n = 0, 1, 2, . . . , N − 1 denotes the number of lagging time steps. If R0, R1, . . .,
RN−1 are used to estimate the model parameters that govern the stochastic process x, it
is necessary to construct the likelihood function p(R0, R1, . . . , RN−1|θ, C). Even though
the individual probability distribution of a particular Rn can be obtained, deriving the joint
PDF of R0, R1, . . . , RN−1 is another story due to the correlation structure of the Rns. This
explains why parametric identification using the correlation function is well-known to be
difficult and usually biased. Furthermore, in other cases, even though the proper likelihood
function can be written analytically, numerical computation may be very expensive or even
prohibited. One example can be referred to in Chapter 4, Section 4.2.

2. In the probabilistic approach, the solution is not simply the optimal parameters but also the
probability density function that describes the complete picture of the uncertainty. It is a
challenging task to demonstrate the representation of the updated PDF since it has
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been shown that its topology may be very complicated (e.g., multiple peaks or even
unidentifiable).

Example. Consider a quadratic function:

Q = ax + bx2 (2.92)

where the actual values of the uncertain parameters are ã = −3 and b̃ = 2. The function values
are observed at x = 0.25, 0.5, 0.75, 1, . . . , 2.75, 3 with independent Gaussian measurement
noise ε of zero mean and standard deviation σ0/x:

y = Q + ε (2.93)

The actual value of σ0 is taken to be 1.0. In order to have a fair ground for comparison with
the least-squares method, an improper prior is taken so the updated PDF for the uncertain
parameters is given by:

p(a, b, σ0|D, C) = κ0σ
−12
0 exp

[
− 1

2σ2
0

12∑
n=1

x2
n(yn − axn − bx2

n)2

]
(2.94)

where κ0 is a constant that does not depend on the uncertain parameters. The most probable
values of the parameters can be obtained by maximizing the posterior PDF. In particular, the
equations for a and b are given by:

⎧⎨
⎩

a
∑12

n=1 x4
n + b

∑12
n=1 x5

n = ∑12
n=1 x3

nyn

a
∑12

n=1 x5
n + b

∑12
n=1 x6

n = ∑12
n=1 x4

nyn

(2.95)

and these are uncoupled with the one for σ0. Then, the updated values for a and b are readily
obtained:

⎡
⎣

a


b


⎤
⎦ =

⎡
⎣
∑12

n=1 x4
n

∑12
n=1 x5

n

∑12
n=1 x5

n

∑12
n=1 x6

n

⎤
⎦

−1 ⎡
⎣
∑12

n=1 x3
nyn

∑12
n=1 x4

nyn

⎤
⎦ (2.96)

Furthermore, the optimal value for the standard deviation of the measurement noise is obtained
by solving ∂p(a
, b
, σ0|D, C)/∂σ0 = 0:

σ

0 =

√√√√ 1

12

12∑
n=1

x2
n(yn − a
xn − b
x2

n)2 (2.97)

Figure 2.20 shows a typical result of the problem. The dashed line is the true relationship and
the crosses are the measurements. Even though the samples are quite scattered in the low range
of x, the Bayesian approach reflects the correct weighting for different measurements. On the
other hand, the traditional least-squares method simply minimizes the 2-norm of the difference
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Figure 2.20 Comparison between the Bayesian and least-squares methods

between the measurements and the model-predicted values, and the identified parameters are
given by:

[
a


b


]
=
[∑12

n=1 x2
n

∑12
n=1 x2

n∑12
n=1 x3

n

∑12
n=1 x4

n

]−1 [∑12
n=1 xnyn∑12
n=1 x2

nyn

]
(2.98)

A significantly different curve is obtained and it is referred to (LS) in the figure. The least-
squares method gives unnecessarily too much weighting to the measurements in the region
with small values of x and the identified curve is lifted up on the left hand side. Although
the least-squares method can be modified to provide correct identification results, appropriate
distribution and thus the correct weightings are necessary to achieve this goal. Generally
speaking, the likelihood function is not necessary of the Gaussian type so the objective function
used in the least-squares method is incorrect. One example is the spectrum and it will be further
explained in Chapter 3.

2.4 Regression Problems

2.4.1 Linear Regression Problems

A linear regression relationship for a quantity of concern Q can be written as:

Q(x; b, C) =
Nb∑
l=1

blxl (2.99)
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where Nb is the total number of uncertain coefficients, bls. The variables x1, x2, . . . , xNb
are

the corresponding measured data in establishing the regression formula. The measurement of
Q is modeled as:

y = Q(x; b, C) + ε (2.100)

where ε is a Gaussian random variable with zero mean and variance σ2
ε . It is used to represent the

measurement noise and modeling error. The uncertain parameters in θ = [bT , σ2
ε ]T include the

coefficients bls and the prediction-error variance σ2
ε so the total number of uncertain parameters

is Nb + 1.
The data D includes the measurement of x and the corresponding values for y. By assum-

ing that the prediction errors in different records are statistically independent, the likelihood
function is obtained:

p(D|θ, C) = (2π)−
N
2 σ−N

ε exp

[
− N

2σ2
ε

Jg(b;D, C)

]
(2.101)

where N is the total number of measured records. The goodness-of-fit function Jg(b;D, C)
represents the degree of data fitting and it is given by:

Jg(b;D, C) = 1

N

N∑
n=1

[
y(n) −

Nb∑
l=1

blxl(n)

]2

(2.102)

A smaller value of this function implies better fitting to the data. Two special but popular choices
of prior distributions of the uncertain parameters are considered in the following sections.

2.4.1.1 Independent Uniform Prior

In the case of a uniform prior PDF of the coefficients, the optimal coefficient vector b
 can
be obtained by minimizing Jg(b;D, C). This can be achieved by solving the linear algebraic
equation: ∂Jg(b;D, C)/∂b = 0, and the updated coefficient vector is readily obtained:

b
 = A−1

⎡
⎢⎢⎢⎢⎢⎢⎣

1
N

∑N
n=1 x1(n)y(n)

1
N

∑N
n=1 x2(n)y(n)

...
1
N

∑N
n=1 xNb

(n)y(n)

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.103)

where A is an Nb × Nb symmetric matrix and its (l, l′) component is:

A(l,l′) = 1

N

N∑
n=1

xl(n)xl′ (n) (2.104)

By using the Cauchy–Schwarz inequality, it can be easily shown that this matrix is invertible
if and only if the vectors [xl(1), xl(2), . . . , xl(N)], l = 1, 2, . . . , Nb, are linearly independent.
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In a practical situation, it is rare that this matrix is perfectly singular but it is possibly ill-
conditioned. In this case, it implies that some of the variables xls can be expressed in a linear
combination of the others. In this case, the order of the regression relationship has to be reduced
to give an identifiable case.

Furthermore, the updated fitting-error variance σ2
ε



can be obtained by maximizing the

product of the prior PDF and the likelihood function p(θ|C)p(D|θ, C), which is proportional
to the posterior PDF. It turns out that it is equal to the minimal goodness-of-fit value:

σ2
ε


 = min
b

Jg(b;D, C) = Jg(b
;D, C) (2.105)

The posterior PDF p(θ|D, C) is truncated Gaussian centered at the optimal parameter θ
 =
[b
T , σ2


ε ]T . The Hessian matrix H(θ
) is the second derivatives of the objective function
J(θ) = − ln p(θ|C)p(D|θ, C) and its elements are given by:

H(l,l′)(θ
) = − ∂2

∂θlθl′
ln [p(θ|C)p(D|θ, C)]

∣∣∣∣
θ=θ


(2.106)

In this case, the Hessian matrix has the following form:

H(θ
) = N

[
(σ2


ε )−1A 0Nb×1

01×Nb
0.5(σ2


ε )−2

]
(2.107)

For large N, the joint posterior PDF can be well approximated by Gaussian distribution with
the covariance matrix:

�θ = H(θ
)−1 = 1

N

[
σ2


ε A−1 0Nb×1

01×Nb
2(σ2


ε )2

]
(2.108)

The diagonal elements of the covariance matrix �θ are the marginal variance of the corre-
sponding element of θ and the quantification of the uncertainty of the model parameters allows
for the uncertainty analysis of the prediction.

2.4.1.2 Gaussian Prior for the Coefficients and Inverse Gamma Distribution
for the Prediction-error Parameter

Another popular choice of the prior PDF is the Gaussian distribution. First, the prior PDF
considered in this section is separable:

p(θ|C) = p(b, σ2
ε |C) = p(b|C)p(σ2

ε |C) (2.109)

For the uncertain coefficients in b, the Gaussian prior PDF is taken with mean bη and covariance
matrix V:

p(b|C) = (2π)−
Nb
2 |V|− 1

2 exp

[
−1

2
(b − bη)T V−1(b − bη)

]
(2.110)
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However, the prior distribution for prediction-error variance is taken to be the conjugate prior
and it is the inverse Gamma distribution in this case:

p(σ2
ε |C) = β

α0
0

σ
2(α0+1)
ε 	(α0)

exp

(
−β0

σ2
ε

)
(2.111)

Then, the product of the prior PDF and likelihood function is given by:

p(θ|C)p(D|θ, C) = (2π)−
Nb+N

2 |V|− 1
2

β
α0
0

	(α0)
σ−2(α0+1)−N

ε exp

(
−β0

σ2
ε

)

× exp

⎡
⎣−1

2
(b − bη)T V−1(b − bη) − 1

2σ2
ε

N∑
n=1

(
y(n) −

Nb∑
l=1

blxl(n)

)2⎤
⎦

(2.112)

For a given value of σ2
ε , the conditional optimal coefficient vector b
 can be obtained by

maximizing the posterior PDF p(θ|D, C), or equivalently p(θ|C)p(D|θ, C). This can be done
by solving the linear algebraic equation: ∂p(θ|C)p(D|θ, C)/∂b = 0 and the solution is:

b
(σ2
ε ) = (Nσ−2

ε A + V−1)−1

⎛
⎜⎜⎜⎜⎜⎝

Nσ−2
ε

⎡
⎢⎢⎢⎢⎢⎣

1
N

∑N
n=1 x1(n)y(n)

1
N

∑N
n=1 x2(n)y(n)

...
1
N

∑N
n=1 xNb

(n)y(n)

⎤
⎥⎥⎥⎥⎥⎦

+ V−1bη

⎞
⎟⎟⎟⎟⎟⎠

(2.113)

where the matrix A has (l, l′) element:

A(l,l′) = 1

N

N∑
n=1

xl(n)xl′ (n) (2.114)

It can be easily shown that the matrix Nσ−2
ε A + V−1 is invertible.

In the special case when the matrix V has large diagonal elements (i.e., the prior distribution
contains very little information of the coefficients), the solution in Equation (2.113) is reduced
to the solution in Equation (2.103). In general, the solution in Equation (2.113) can be treated
as a weighted average of the solution in Equation (2.103) and the most probable value of the
prior distribution and the weightings are Nσ−2

ε and V−1.
For a given coefficient vector b, the conditional optimal prediction-error variance σ2


ε can
be found by solving ∂p(θ|C)p(D|θ, C)/∂σ2

ε = 0 and it is readily obtained:

σ2
ε



(b) = NJg(b;D, C) + 2β0

N + 2(α0 + 1)
(2.115)

For large N, it is approximately equal to Jg(b;D, C).
By using the expressions of the conditional optimal in Equations (2.113) and (2.115), the

optimal parameters can be obtained by the following iterative algorithm. First, take σ2
ε = 0 in

Equation (2.113) and compute the conditional optimal values for the uncertain coefficients.
Then, with these conditional optimal coefficients, the conditional prediction-error variance
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can be computed by Equation (2.115). By using this value of the prediction-error variance, the
conditional optimal for the uncertain coefficients can be updated. By repeating the last two
steps, the updated uncertain parameters can be obtained until convergence is achieved.

The conditional PDF p(b|D, C, σ2
ε ) is Gaussian with mean b
(σ2

ε ) and covariance ma-
trix (Nσ−2

ε A + V−1)−1. Furthermore, the conditional PDF p(σ2
ε |D, C, b) follows the in-

verse Gamma distribution IG(α, β) with shape parameter α = N/2 + α0 and scale parameter
β = NJg(b;D, C)/2 + β0. Moreover, for the case of large N, the matrix (Nσ−2

ε A + V−1)−1

can be approximated by σ2
ε /NA−1 and the marginal PDF of the prediction-error variance σ2

ε is
approximately an inverse Gamma distribution IG(α
, β
), where the shape and scale parameter
are given by:

α
 = N − Nb

2
+ α0

β
 = N

2
Jg(b
;D, C) + β0 (2.116)

According to Equations (2.46) and (2.47), the mean and variance are:

E[σ2
ε |D, C] = NJg(b
;D, C) + 2β0

N − Nb + 2α0 − 2
(2.117)

and

E[(σ2
ε − E[σ2

ε |D, C])2|D, C] = 2[NJg(b
;D, C) + 2β0]2

(N − Nb + 2α0 − 2)2(N − Nb + 2α0 − 4)
(2.118)

For large N, the variance is approximately equal to 2Jg(b
;D, C)2/N = 2(σ2

ε )2/N. By ob-

serving Equation (2.108), it is the same as the previous case with uniform prior distribution.

2.4.2 Nonlinear Regression Problems

In this section, nonlinear predictive model classes are considered and there is in general no
closed-form solution for the updated model parameters in contrast to the previous linear case.
An efficient algorithm is introduced in this section to search for the updated parameters. With a
similar fashion to Equation (2.99), a nonlinear regression formula takes the following general
form:

Q(x; b, n, C) = f (x; n) +
Nb∑
l=1

blfl(x; n) (2.119)

where f and fl, l = 1, 2, . . . , Nb, are known nonlinear functions with unknown parameters in
n ∈ RNn . Again, the measurement is assumed to be different from its model predicted value
due to measurement noise and modeling error:

y = Q(x; b, n, C) + ε (2.120)

The random variable is again modeled as a zero mean Gaussian random variable with variance
σ2

ε . Given some measurements of x and y, the likelihood function takes the same form as in
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Equation (2.101) but the goodness-of-fit function has this form:

Jg(b, n;D, C) = 1

N

N∑
n=1

[
y(n) − f (x(n); n) −

Nb∑
l=1

blfl(x(n); n)

]2

(2.121)

Given a particular parameter vector of n, the closed-form solution for the conditional optimal
values for b and σ2

ε can be obtained. For example, with the prior PDF used in Section 2.4.1.1,
the conditional optimal value for b can be computed in a similar fashion as Equation (2.103):

b
(n) = A−1

⎡
⎢⎢⎢⎢⎢⎣

1
N

∑N
n=1 f1(x(n); n)[y(n) − f (x(n); n)]

1
N

∑N
n=1 f2(x(n); n)[y(n) − f (x(n); n)]

...
1
N

∑N
n=1 fNb

(x(n); n)[y(n) − f (x(n); n)]

⎤
⎥⎥⎥⎥⎥⎦

(2.122)

and the conditional optimal value for σ2
ε is given by:

σ2
ε



(n) = min

b
Jg(b, n;D, C) = Jg(b
, n;D, C) (2.123)

Once the conditional optimal values for b and σ2
ε are obtained, the value of the goodness-of-fit

function can be computed by Equation (2.121) whereas the normalizing constant in the posterior
PDF does not affect the parametric identification results. By maximizing the goodness-of-fit
function with respect to n, the updated model parameters can be obtained. Therefore, the closed-
form solution of the conditional optimal parameters reduces the dimension of the original
optimization problem from Nb + Nn + 1 to Nn only.

It can be easily shown that the conditional PDF p(b|D, C, σ2
ε , n) is Gaussian with mean

b
(n) and covariance matrix σ2
ε /NA−1, which depend on n. Furthermore, the conditional

PDF p(σ2
ε |D, C, n) follows the inverse Gamma distribution with shape parameter α
 and scale

parameter β
 given by:

α
 = N − Nb

2
+ α0

β
 = N

2
Jg(b
, n
;D, C) + β0 (2.124)

2.5 Numerical Representation of the Updated PDF

2.5.1 General Form of Reliability Integrals

In probabilistic analysis, the following integral is commonly encountered:

R ≡
∫

�

Q(θ)p(θ)dθ (2.125)

where Q is the concerned quantity that depends on the model parameter vector θ and p(θ) is
a probability distribution, that may be the prior or posterior PDF of the model parameters. In
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the latter case where system measurements are available, this integral can be updated:

RD ≡ E[Q|D, C] =
∫

�

Q(θ)p(θ|D, C)dθ (2.126)

For example, in reliability analysis, the quantity Q is considered as the probability that the
structure with parameter vector θ would fail, i.e., Q(θ) = P(F |θ, C). Then, the updated integral
becomes the updated robust probability of failure for the structure, when it is subjected to some
stochastic excitation [198]:

RD = P(F |D, C) =
∫

�

P(F |θ, C)p(θ|D, C)dθ (2.127)

This updated robust probability of failure incorporates knowledge about θ from C and from the
updated information from the data. It is robust because the modeling uncertainties are taken
into explicit account [198]. The updated structural reliability of the structure is P(S|D, C) =
1 − P(F |D, C), where S denotes a safe status of the structure.

Another example is the probability of damage. Damage may be quantified as the fractional
reduction in the stiffness from that in the undamaged state of a substructure. Assume that the
measurements of the structure are available for the undamaged and possibly damaged state,
denoted byDud andDpd , respectively. Then, the probability that damage in the lth substructure
exceeds the damage level d is given by:

Pdam
l (d|Dud,Dpd, C) ≡ P{θpd

l < (1 − d)θud
l |Dud,Dpd, C}

=
∫ ∞

−∞
P(θpd

l < (1 − d)θud
l |θud

l ,Dpd, C)p(θud
l |Dud, C)dθud

l

(2.128)

This probability of damage in the substructures can be used to indicate the likely location and
severity of damage in the structure. The integral in Equation (2.128) can also be classified in the
updated integral in Equation (2.126) if D = {Dud,Dpd}, θ = θud

l and Q(θ) = P(θpd
l < (1 −

d)θud
l |θud

l ,D, C). Then, RD = Pdam
l (d|Dud,Dpd, C), the probability of damage exceeding

severity d in the lth substructure.

2.5.2 Monte Carlo Simulation

Monte Carlo simulation (MCS) is a well-known method for evaluating the integral in
Equation (2.125) [225]. It is robust since it does not depend on the type of problems or the
number of random variables, i.e., the dimension of the integral. The key of MCS is to simulate
random samples of θ according to the distribution p(θ): θ1, θ2, . . . , θN . Then, the integral in
Equation (2.125) can be evaluated directly by statistical averaging:

R ≈ 1

N

N∑
n=1

Q(θn) (2.129)

In evaluating the type of updated robust integral in Equation (2.126) by MCS, it requires the
parameter samples distributed according to the updated PDF p(θ|D, C). Therefore, generation
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of samples according to the updated PDF does not only serve as the representation of the
posterior distribution but also for the computation of reliability integrals and other marginal
distributions or moments. However, this may not be a trivial task, especially for locally iden-
tifiable and unidentifiable cases. In the next section, an adaptive Markov Chain Monte Carlo
simulation algorithm is introduced to fulfill this goal.

2.5.3 Adaptive Markov Chain Monte Carlo Simulation

2.5.3.1 Metropolis–Hastings Algorithm

From a simulation perspective, Equation (2.126) suggests that RD may be estimated as the
average of Q over the samples which are simulated according to p(θ|D, C). Although a method
for generating independent samples according to p(θ|D, C) is generally not available, the
Markov Chain Monte Carlo (MCMC) simulation, in particular, the Metropolis–Hastings (MH)
algorithm, offers a feasible way to simulate samples according to an arbitrary distribution, at
the expense of introducing dependence among the samples. However, direct application of the
MH algorithm to simulate Markov chain samples according to p(θ|D, C) is not feasible due to
the small region N of probability concentration. Nevertheless, as the adaptive method is built
on the MH algorithm, its implementation is discussed in this section.

The Metropolis–Hastings algorithm is a simple procedure to simulate samples according to
an arbitrary PDF where the target PDF has to be known up to a scaling constant only. It was
originally developed by Metropolis and his co-workers [178] and later generalized by Hastings
[100]. Its potential use for structural reliability problems and Bayesian model updating has
been recently demonstrated [8, 9, 17]. In the MH method, samples are simulated as the states
of a special Markov chain whose limiting stationary distribution is equal to the target PDF. In
other words, the PDF of the Markov chain sample θn simulated at the nth Markov step, tends
to the target PDF as n → ∞. The Markov chain samples, which are dependent in general, can
be used for statistical averaging as if they were independent, although with some reduction of
efficiency in the estimator.

Let p∗(ξ|θ) be a chosen PDF, called the proposal PDF, which is a PDF for ξ that depends on
θ. The role of p∗ will become clear shortly. For convenience in notation, define the following
function:

q(θ) ≡ p(D|θ, C)p(θ|C) = p(θ|D, C)/κ0 (2.130)

The value of q can be computed readily for a given θ, while the same is not true for p(θ|D, C)
because evaluating the normalizing constant κ0:

κ0 = 1/p(D|C) = 1/

∫

�

p(θ|D, C)p(θ|C)dθ (2.131)

requires a high-dimensional integration. In the following, the MH algorithm is described to
simulate N Markov chain samples {θ1, θ2, . . . , θN} with a limiting stationary distribution equal
to the target PDF p(θ|D, C). To start the Markov chain, let θ1 be a point chosen either deter-
ministically or simulated according to some PDF which approximates p(θ|D, C). In general,
for n = 1, 2, . . . , N − 1, the next sample θn+1 is simulated from the current sample θn by
first simulating a candidate state ξ from the proposal PDF p∗(ξ|θn) and then computing the
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probability density quotient:

Q(ξ, θn) = q(ξ)p∗(θn|ξ)

q(θn)p∗(ξ|θn)
(2.132)

The candidate state ξ is then accepted with probability min{1,Q} and rejected with the re-
maining probability 1 − min{1,Q} = max{0, 1 − Q}.

If the candidate state is accepted, it will be taken as the next state of the Markov chain, i.e.,
θn+1 = ξ. Otherwise, the current state is remained as the next state, i.e., θn+1 = θn. In other
words, the next state is given by:

θn+1 =
{

ξ with probability min{1,Q}
θn with probability max{0, 1 − Q}

(2.133)

This process is repeated until N Markov chain samples have been generated.
It can be shown that the next sample θn+1 will be distributed according to p(θ|D, C) if the

current sample θn is also distributed in the same way. In other words, p(θ|D, C) is the stationary
PDF of the Markov chain. If the Markov chain is started with the initial state θ1 simulated
from a PDF different from p(θ|D, C), then the Markov chain will be in a transient state and
its samples will not be distributed exactly as p(θ|D, C). Under the assumption of ergodicity,
however, the Markov chain will converge to the stationary state, and so the PDF of θn will tend
to p(θ|D, C) as n → ∞. With a finite sample size used in an actual implementation, ergodicity
often becomes an issue of whether the Markov chain samples can populate sufficiently well
the region of significant probability of the target PDF p(θ|D, C). See Au and Beck [8, 9] for a
more detailed discussion of ergodicity in applying the MH method to reliability problems.

Using the Markov chain samples {θ1, θ2, . . . , θN}, RD in Equation (2.126) is estimated
as the average R̂D of Q over the samples, which is the same as the usual MCS estimator,
except that the samples are simulated from a Markov chain instead of being independent and
identically distributed. Nevertheless, the estimator R̂D has similar statistical properties as those
of the MCS estimators. In order to reduce the initial transient effect of the Markov chain on the
estimate, the first few samples (say 10) may be discarded when computing R̂D. Thus, the
Markov chain samples {θ1, θ2, . . . , θN} used for computing R̂D are those simulated after
the initial transient stage.

The proposal PDF p∗ determines the distribution of the candidate state ξ given the current
state, and consequently the convergence rate of the estimator R̂D to RD. If the candidate state
is rejected too often because small values of the quotient Q are encountered during simulation,
the Markov chain will consist of many repeated samples. As a result, the correlation among
samples will be large and it slows down the convergence of R̂D. Unfortunately, due to the small
scale ϕ of the neighborhoodN of the manifold, it is very difficult to choose an appropriate p∗ in
the absence of prior knowledge about the manifold so that the acceptance rate of the candidate
state is not too small while at the same time the Markov chain samples effectively explore N .
Consequently, the region visited by the Markov chain samples will be small compared to N ,
leading to substantial bias in the estimate for RD. As a result, direct application of the MH
algorithm to simulate samples according to the target PDF p(θ|D, C) is not feasible.
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2.5.3.2 Adaptive MH Algorithm

The problems encountered in applying the MH algorithm directly arise from the fact that the
updated PDF p(θ|D, C) is concentrated in a small neighborhood N of the manifold S in the
parameter space. The process of adapting samples to N in the MH algorithm is inhibited by
the small scale ϕ of the thickness of N compared to the size of the proposal PDF required
to cover N with an affordable number of samples. This suggests that direct adaptation using
a proposal PDF which varies with a vastly different length scale from that of the target PDF
will not be effective. In view of this, a sequence of intermediate PDFs is introduced in Beck
and Au [17] to bridge the gap in length scale between the prior PDF p(θ|C) and the target
updated PDF p(θ|D, C). By utilizing successively the information from the previous adapted
intermediate PDFs in the MH algorithm, the region N can be populated by the Markov chain
samples in a gradual manner.

Let {p(1), p(2), . . . , p(s0)} be a chosen sequence of PDFs converging to p(θ|D, C) (= p(s0))
so that their region of significant probability content gradually diminishes to that of p(θ|D, C).
For example, p(s) may be chosen as the updated PDF from Bayes’ Theorem based on an
increasing amount of data:

p(s) = p(θ|D(s), C) (2.134)

whereD(1) ⊂ D(2) ⊂ · · · ⊂ D(s0) = D. Thus, starting with the prior PDFp(θ|C) as the proposal
PDF, the MH algorithm is carried out to simulate samples {θ(1)

1 , θ
(1)
2 , . . . , θ

(1)
N } with the target

PDF p(1). A kernel sampling density P (1) is constructed as a weighted sum of Gaussian PDFs
centered among these samples to approximate p(1) [8, 240]:

P (1)(θ) =
N∑

n=1

wn G(θ; θ(1)
n , �n) (2.135)

where G(θ; θ(1)
n , �n) is the multi-dimensional Gaussian PDF evaluated at θ with mean θ(1)

n and
covariance matrix �n, and the wn are the probability weights associated with the Gaussian
PDFs, which satisfy wn ≥ 0 and

∑N
n=1 wn = 1. The choice of wn and �n is completely

defined by the samples {θ(1)
1 , θ

(1)
2 , . . . , θ

(1)
N }, and so is P (1) [8]. Since P (1) is a weighted sum of

Gaussian PDFs, the kernel marginal PDF for a particular component θl of θ can be obtained by
analytically integrating Equation (2.135). Similarly, the kernel marginal cumulative distribution
function (CDF) of θl can be readily computed in terms of a weighted sum of Gaussian CDFs.
More importantly, independent samples distributed as P (1) can be simulated readily, which are
approximately distributed as p(1) and so lie in the region of significant probability of p(1).

To continue, P (1) is used as the proposal PDF for simulating the Markov chain samples
{θ(2)

1 , θ
(2)
2 , . . . , θ

(2)
N } with the target PDF p(2). These samples are then used to construct the

kernel sampling density P (2) as in Equation (2.135), which gives an approximation to p(2).
In general, the kernel sampling density P (s) (which approximates p(s)) is constructed using
the Markov chain samples at the sth simulation level which is then used as the proposal PDF
for simulating Markov chain samples for the next level with the target PDF p(s+1). This is
continued until the sth0 simulation level, where Markov chain samples for the target updated
PDF p(θ|D, C) = p(s0) are simulated.
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Let R(s) be the expectation of the concerned quantity Q(θ) when θ is distributed according
to p(s). It is estimated using the Markov chain samples {θ(s)

1 , θ
(s)
2 , . . . , θ

(s)
N } by:

R(s) ≈ R̂(s) = 1

N

N∑
n=1

Q(θ(s)
n ) (2.136)

Since p(s) converges to p(θ|D, C) as the simulation level s increases to s0, R(s) converges to
RD defined by Equation (2.126):

RD ≈ R̂(s0) (2.137)

The success of the adaptive strategy relies on effective application of the MH algorithm at
each simulation level s, which requires that p(s−1) (which is approximated by P (s−1)) varies
with a similar length scale to p(s) for s = 1, 2, . . . , s0. The choice of the sequence {p(s)} is thus
important to the success of the adaptive method. If the updated PDF with data D is of the form
[18, 268]:

p(θ|D, C) = κ exp

[
−J ′

g(θ)

2ϕ2

]
(2.138)

where J ′
g is the goodness-of-fit function normalized by the prediction error covariance, and ϕ

is a measure of the size of the prediction error, then a good choice for the sequence {p(s)} is:

p(s) = κ(s) exp

[
− J ′

g(θ)

2(ϕ(s))2

]
(2.139)

where (ϕ(s))2 = 2s0−sϕ2, s = 1, 2, . . . , s0, with 2s0 ≈ ϕ−2 if the length scale of the prior PDF
is of order one. Thus, the exponent of the posterior PDF is doubled when advancing to the next
simulation level. Note also that the computational effort does not depend on the dimension of
the parameter space.

2.5.3.3 Statistical Properties of the Estimator

The statistical properties of the estimator R̂(s) in Equation (2.136) are presented next, assuming
the Markov chain generated according to the MH algorithm at each simulation level is ergodic.
In spite of the fact that R̂(s) is computed using dependent samples from a Markov chain, it
still has the usual properties of MCS estimators using independent and identically distributed
samples [70]. For example, R̂(s) converges to R(s) with probability 1 as N → ∞ (Strong Law
of Large Numbers), and under similar conditions as those for Monte Carlo estimators, R̂(s) is
Gaussian distributed as N → ∞ (Central Limit Theorem). If the Markov chain is started with
the initial state θ

(s)
1 distributed as the target PDF p(s), then the Markov chain is stationary, and

R̂(s) is unbiased. Otherwise, R̂(s) is only asymptotically unbiased, although the bias decays
with an increasing number of Markov steps.
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For a fixed proposal PDF for the sth simulation level, assuming that the Markov chain has
settled into its stationary state, it can be shown that the coefficient of variation of R̂(s) is:

δ(s) = �(s)

√
1 + γ (s)

N
(2.140)

where �(s) is the coefficient of variation of Q(θ) when θ is distributed as p(s), and γ (s) is a
correlation factor:

γ (s) = 2
N−1∑
n=1

(
1 − n

N

)
ρ(s)(n) (2.141)

and ρ(s)(n) is the correlation coefficient between the concerned quantity Q evaluated by the
Markov chain samples separated by n Markov steps:

ρ(s)(n) =
Ep(s)

[(
Q(θ(s)

1 ) − R(s)
)(

Q(θ(s)
n+1) − R(s)

)]

(R(s))2 (2.142)

By estimating the correlation sequence {ρ(s)(n)} from the Markov chain samples, γ (s) in
Equation (2.141), and hence δ(s) in Equation (2.140), can be estimated in a single simula-
tion run.

2.5.4 Illustrative Example

The adaptive MCMC simulation method is applied to updating the robust reliability for a two-
story structural frame, depicted in Figure 2.21. The bay width and story height are 5.0 m and
2.5 m, respectively. The Young’s modulus and mass density are taken to be 200 GPa and 7800
kg/m3, respectively. The beams have a cross-sectional area of 0.01 m2 and a moment of inertia
of 6.0 × 10−4 m4 but they are 0.02 m2 and 1.5 × 10−4 m4 for the columns. As a result, the
structure has modal frequencies of 5.20 and 15.4 Hz. The structure is assumed to have 1.0%
of critical damping for all modes. A simple model with two degrees of freedom is used in the
system identification in order to estimate the inter-story stiffnesses and to assess the reliability
of the structure. Specifically, the stiffness matrix is given by:

K = Kη

[
θ1 + θ2 −θ2

−θ2 θ2

]
(2.143)

where θl is the inter-story stiffness parameter of the lth story. The uncertain stiffness parameters
θ = [θ1, θ2]T to be identified are multipliers of the nominal interstory stiffness which is equal
to Kη = 46.08 MN/m. Furthermore, a lumped mass model (i.e., diagonal mass matrix) is
used with a floor mass of 11.17 × 103 kg. There is no combination of (θ1, θ2) such that the
structural mass and stiffness matrix are fully consistent with the actual frame. The nominal and
other possible models deviate from the actual frame system and this is imposed deliberately
to simulate the reality.
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Figure 2.21 Two-story structural frame

Two cases are considered for the available dynamic data that correspond to locally identi-
fiable and unidentifiable cases. For the first case, the modal data D consists of the identified
modal frequencies for both modes of the frame. Rather than performing modal identification
on simulated time histories, noisy versions of the modal frequencies are generated and the
measurements are �̂(1) = 5.5 Hz and �̂(2) = 14.9 Hz.

The prior PDF p(θ|C) is taken to be independent log-normal PDFs with means of 0.9 and
1.2 and unit variance. Using the modal data D, the updated PDF for the stiffness parameter
vector θ is formulated as:

p(θ|D, C) = κ0 exp

[
−J ′

g(θ)

2ϕ2

]
p(θ|C) (2.144)

where κ0 is a normalizing constant, ϕ is related to the prediction-error coefficient of variation
and the modal goodness-of-fit function depends on the type of measurements. In the adaptive
procedure, the sequence of intermediate PDFs {p(s)} is constructed by successively substituting
the sequence of values ϕ2 = 1/2s into Equation (2.144) for s = 1, 2, . . . , 10.

2.5.4.1 Locally Identifiable Case

If it is assumed that only one sensor (at either the first or second floor) was used during the
modal testing, only the modal frequencies can be identified. In this case, the two stiffness
parameters are locally identifiable and the normalized modal goodness-of-fit function is given
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by:

J ′
g(θ) =

2∑
m=1

[
�̂(m)2 − �(m)(θ)2

�̂(m)2

]2

(2.145)

where �̂(m) and �(m)(θ) are the measured modal frequency and the model modal frequency of
the mth mode, which depend on the structural parameters in θ. It turns out that there exist two
local maxima of the updated PDF for the stiffness parameters: [0.73,0.84] and [1.6,0.38]. The
structural model with θ1 = 0.73 and θ2 = 0.84 is clearly more flexible than the nominal model
with θ1 = θ2 = 1. This is expected as the simple structural model for identification with the
nominal parameters is obtained by assuming rigid floors.

Figure 2.22 shows the Markov chain samples for the structure at simulation levels s =
1, 4, 7, 8, 9, and 10, corresponding to ϕ2 = 1/2, 1/16, 1/128, 1/256, 1/512, and1/1024 in
Equation (2.144). For each simulation level, the first 10 Markov chain samples are ignored in
order to avoid the samples in the transient stage. N = 500 Markov chain samples are simu-
lated and they are shown with dots in the figure. The Markov chain samples are not all distinct
since there is a certain probability to repeat a Markov chain sample in each step. To show the
population of samples consistently, the area of the dots are shown proportional to the number
of samples at each location. All the samples are located around the two local optimal points of
the updated PDF. The marginal kernel PDFs for θ1 and θ2, constructed from the Markov chain
samples, are shown in Figure 2.23 and the estimated marginal PDFs can be readily obtained
from the joint kernel PDF without numerical integration. The dashed lines show typical results
for three different runs and the solid lines show the solution obtained by numerical integration
for reference. The peak at around (0.73, 0.84) is significantly higher than the other so there are
more samples distributed around (0.73, 0.84) in Figure 2.22.
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Figure 2.22 Markov chain samples for the structural parameters (locally identifiable case)
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Figure 2.23 Updated marginal PDFs at different simulation levels (locally identifiable case)

The reliability of the structure subjected to stochastic ground motion is updated using the
shear building model. For the purpose of this illustrative example, the ground excitation is
modeled by stationary Gaussian white noise with spectral intensity Sẍg0 = 6.0 × 10−3 m2/s3.
The updated robust failure probability P(F |D, C) is studied where failure corresponds to
the stationary displacement of the top floor exceeding the threshold level b = 3.0 cm (0.6%
deformation) within a duration of T = 20 s. Assuming that the out-crossing events follow
a Poisson process, the probability of failure with given parameters can be approximated by
[218]:

P(F |θ, C) ≈ 1 − exp [−2Tν(θ)] (2.146)

where ν(θ) is the mean upcrossing rate for the displacement of the top floor:

ν(θ) = σẋ2 (θ)

2π σx2 (θ)
exp

[
− b2

2 σx2 (θ)2

]
(2.147)

In this equation, σx2 and σẋ2 are the standard deviations of the stationary displacement and
velocity response of the top floor, respectively, obtained by the Lyapunov equation [249]:

A� + �AT + 2πSẍg01 = 0 (2.148)

The matrix A is given by:

A =
[

0 I

−M−1K −M−1C

]
(2.149)
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where M, C and K are the mass, damping and stiffness matrix, respectively. The matrix 1 is
the matrix with all entries being unity. The matrix � represents the covariance matrix of the
state vector of the displacements and velocities: [xT , ẋT ]T . Equation (2.148) can be solved by
the function ‘lyap’ in MATLAB® [171].

The probability of outcrossing depends not only on the variance of the response but also
the frequency content of the signal. It is not surprising that a signal has a higher probability
of outcrossing than another with the same variance but a lower frequency content over the
same duration of time since there are more cycles in the time duration in the former case. In
particular, the ratio σẋ2 (θ)/σx2 (θ) in the formula reflects the averaged frequency of the signal.
For example, for a single-degree-of-freedom (SDOF) system subjected to stationary Gaussian
white noise, it is equal to the natural frequency of the system. The estimates P̂(F |D(s), C),
s = 1, 2, . . . , 10, for the updated failure probabilities for each prediction-error level, are shown
in Figure 2.24. The circles show typical results from three independent runs. The dashed line
and solid line show the solution by numerical integration and the average by 50 simulation
runs, respectively. The failure probabilities can be updated without information of the mode
shapes.

2.5.4.2 Unidentifiable Case

The second case assumes that only the first modal frequency is observed because, for
example, the second mode is not excited significantly during the modal testing. In this case,
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Figure 2.24 Updated failure probabilities (locally identifiable case)
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Figure 2.25 Markov chain samples for the structural parameters (unidentifiable case)

the normalized goodness-of-fit function in Equation (2.144) is given by:

J ′
g(θ) =

[
�̂(1)2 − �(1)(θ)2

�̂(1)2

]2

(2.150)

which is similar to Equation (2.145). This unidentifiable case produces an extended region
in the parameter space that gives high posterior probability values. Figure 2.25 shows the
Markov chain samples for the stiffness parameters of the frame. The region of high probability
content contains as a subset its counterpart in Figure 2.22 for the locally identifiable case,
as expected, since this case is the same as the locally identifiable case except that the data
constraint from the second modal frequency is removed. Therefore, the local maxima in the
locally identifiable case should be located in the high probability region of this unidentifiable
case. The marginal kernel PDFs for θ1 and θ2, constructed from the Markov chain samples,
are shown in Figure 2.26 and the estimated marginal PDFs can be readily obtained from the
joint kernel PDF without numerical integration. Even though it is an unidentifiable case, the
region of significant probability for θ1 concentrates in a very narrow interval and this can
be verified by Figure 2.25. By comparing the marginal PDFs of θ2 at simulation levels s = 1
and s = 10, it can be concluded that the data do not have much saying on θ2 in this case.

Figure 2.27 shows the updated failure probability of the frame. Assessment of the impact
of damage on the reliability of the structure can be performed even though there are infinitely
many most probable parameter estimates in this case and it is also seen from the similarity of
Figures 2.24 and 2.27. The loss of information about the second modal frequency does not have
much effect on the updated failure probability because the first mode dominates the response of
this frame. Even the individual values of θ1 and θ2 cannot be identified, different combinations
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Figure 2.26 Updated marginal PDFs at different simulation levels (unidentifiable case)
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of these parameters in the high probability density region give similar first modal frequency.
Furthermore, the failure criterion considers only a global response assessment (displacement
of the top floor). It is worth noting that the failure probability P(F |θ, C) in this example was
obtained by the Poisson approximation. However, the first excursion may be solved more
accurately by other simulation methods without using the Poisson approximation, such as
shown by Au and Beck [9], Pradlwarter and Schuëller [209] and Pradlwarter et al. [210].

2.6 Application to Temperature Effects on Structural Behavior

2.6.1 Problem Description

Structural health monitoring (SHM) is a process for evaluation of the structural safety status
from structural response measurements. The ultimate goal is to develop an economical and
non-destructive system for the earliest possible detection of damage. It has been attracting
much attention in the past two decades. A tremendous amount of efforts have been dedicated in
this area [15, 18, 19, 25, 51, 52, 68, 69, 77, 101, 103, 106, 138, 142, 143, 149, 160, 168, 174, 185],
[186, 195, 201, 204, 228, 238, 244, 246, 261, 267, 268, 281, 282]. Comprehensive literature re-
views on the development of SHM can be found in Doebling et al. [69] and Sohn et al. [247]
and there were also a number of workshops, [1, 44, 187], for example, and special issues of
journals, e.g., Journal of Engineering Mechanics in July 2000 [90] and January 2004 [26]
and Computer-Aided Civil and Infrastructure Engineering in January 2001 [278] and May
2006 [22].

In particular, ambient vibration survey (AVS) on field measurements is a popular choice to
acquire necessary information for estimating the structural health status. It has attracted much
interest because it offers a means of obtaining dynamic data in an economical and efficient
manner, without requiring the setup of special dynamic experiments (e.g., actuators) which
are usually costly, time consuming, and often obtrusive. A challenging problem arises on field
monitoring since the modal parameters, such as the modal frequencies, are affected not only by
the health status of a structure but also by various ambient conditions, such as temperature and
relative humidity [247]. Since the identified values of the modal parameters may be masked by
these substantial effects, it is essential to quantify these ambient effects for the establishment
of a reliable SHM system. In this section, the ambient temperature effect on the fundamental
frequency of a building is investigated. Six-month daily monitored acceleration time histories
of a 22-story reinforced concrete residential building are utilized. The relationship between
the fundamental frequency and temperature is derived. Based on this relationship, variation of
the fundamental frequency caused by temperature fluctuation can be filtered out and a more
reliable structural health monitoring system can be developed.

2.6.2 Thermal Effects on Modal Frequencies of Buildings

Buildings may be modeled as a flexible vertical cantilever beam subjected to gravitational and
lateral loadings. A building with relatively uniform properties over the height can be simplified
as a continuous beam with its structural properties distributed uniformly along the length [243].

The Timoshenko beam model accounts for both shear deformation as well as the rotational
inertia effect. To mimic the behavior of a building, the beam model is taken to be a uniform
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cantilever beam. The boundary condition problem becomes an eigenvalue problem and the
squared fundamental frequency is given by [265]:

�2 = GKs

ρL2 λ (2.151)

where G is the shear modulus of the materials, ρ is the mass density, and L is the length of
the beam. Ks is the dimensionless shear coefficient of a Timoshenko beam. It depends on the
geometry of the cross section and it lies between 1/2 and 1 (e.g., it is 5/6 for a rectangular
cross section and 9/10 for a circular cross section). The dimensionless variable λ satisfies the
following characteristic equation [265]:

(
�2 + λ2

2

�2 − λ2
1

+ �2 − λ2
1

�2 + λ2
2

)
cos λ1 cosh λ2 +

(
λ1

λ2
− λ2

λ1

)
sin λ1 sinh λ2 = 2 (2.152)

where λ1 and λ2 are given by:

λ2
1,2 = �2

2
(1 + γ)

[
1

(1 + γ)2

√
4γA

IL2 + (1 − γ)2 ± 1

]
(2.153)

The variables A and I are the area and second moment of inertia of the cross section of the
beam. The coefficient γ is given by:

γ = GKs

E
(2.154)

where E is the modulus of elasticity.
Although there is no closed-form solution for the characteristic equation in Equation (2.152),

numerical methods, such as finite element methods, can be used to solve this problem
[265, 272]. It was shown that the squared fundamental frequency governed by Equation (2.152)
can be approximated as a combination of a bending term and a shear term:

�2 = EI

ρAL4

(
Cb + Cs

KsAGL2

EI

)
(2.155)

where Cb and Cs are dimensionless coefficients that depend only on the deformed shape of a
beam regardless of its material properties. For a slender building, the bending effect dominates
the structural behavior, and the shear effect can be neglected. In this case, the beam behaves
closely to an Euler–Bernoulli beam and its squared fundamental frequency is given by [59]:

�2 = 12.36
EI

ρAL4 (2.156)

On the other hand, for a short and sturdy building, it behaves more closely to a shear beam,
whose squared fundamental frequency can be approximated by:

�2 = π2KsG

4ρL2 (2.157)

Temperature variation induces both geometric and material effects to a structure. As a result,
the modal frequencies of a structure are influenced by the temperature and it is more important
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than other ambient factors, such as relative humidity [227]. Thermal expansion and Young’s
modulus vary linearly in the range of room temperature [188]. Use αL and αE to denote the
thermal coefficients for expansion and Young’s modulus, respectively, so:

L = L0(1 + αL�T ) (2.158)

E = E0(1 + αE�T ) (2.159)

where L0 and E0 are the length and Young’s modulus at the reference temperature T0, and
�T = T − T0 is the temperature difference from the reference temperature. Similarly, the
area, the second moment of inertia and the shear modulus are given by:

A = A0(1 + αL�T )2 (2.160)

I = I0(1 + αL�T )4 (2.161)

where A0 and I0 are the corresponding beam properties at temperature T0. Note that under
ambient temperature, the variation of the Poission’s ratio, ν, is negligible [188] and so the shear
modulus, G = E

2(1+ν) , follows the same relationship as the Young’s modulus:

G = G0(1 + αE�T ) (2.162)

where G0 is the shear modulus at temperature T0.
Since the total mass of the beam/building does not depend on the temperature, the mass

density is inversely proportional to the volume of the beam model: ρ ∝ 1/AL. By considering
the thermal effects to all these quantities with Equation (2.155), the thermal dependence of the
squared fundamental frequency can be expressed as follows:

�2 = �2
0(1 + αE�T )(1 + αL�T ) (2.163)

where �0 is the fundamental frequency at temperature T0, and b0, b1 and b2 are the uncertain
coefficients for identification. Typical values of αE are −3.2 × 10−4/◦C and −7.2 × 10−3/◦C
for steel and concrete, respectively. On the other hand, typical values of αL are 1.2 × 10−5/◦C
and 1.3 × 10−5/◦C for steel and concrete, respectively. As a result, Equation (2.163) shows
a decreasing squared fundamental frequency–temperature trend, which is opposite to previ-
ous observations [227]. This is because the structural joints become stiffer with an increasing
temperature. Therefore, the equivalent Young’s modulus–temperature relationship of the Timo-
shenko beam is modified: Eeq = E0[1 + (αE + αJ )�T ], where αJ is the coefficient to account
for the joint stiffening effect and it is an uncertain coefficient that depends on the details of the
structure. It is not surprising that this coefficient is mode-dependent. Finally, Equation (2.163)
becomes:

�2 = �2
0[1 + (αE + αJ )�T ](1 + αL�T ) = b0 + b1T + b2T 2 (2.164)

It remains a quadratic function but the coefficients are uncertain. Equation (2.164) is applicable
to all modal frequencies for Timoshenko beam models. Therefore, it is proposed to bridge the
squared fundamental frequency and the ambient temperature by a quadratic function, and the
coefficients can be estimated by Bayesian analysis.



64 Bayesian Methods for Structural Dynamics and Civil Engineering

2.6.3 Bayesian Regression Analysis

In this section, Bayesian analysis is performed to identify the uncertain coefficients of the
quadratic function. The effective temperature Tn is assumed to be different from the measured
values since there is measurement noise in the data acquisition process and the temperature in
different parts of the building could also be non-uniform. The difference is assumed Gaussian
with zero mean and variance σ2

T . In this study, this standard deviation is taken to be σT = 0.5◦C
since the difference between the indoor and outdoor temperature measurement was around 1◦C
and the average value was used as the measured temperature T̂n for the nth day. On the other
hand, the squared fundamental frequency is identified by the Bayesian spectral density approach
to be presented in Chapter 3. Therefore, the uncertain parameters include the coefficients of
the quadratic function and the effective temperatures: θ = [b0, b1, b2, T1, T2, . . . , TN ]T , where
N is the number of data points. The data include the measurements of the temperature and
the identified squared fundamental frequencies: D = [T̂1, T̂2, . . . , T̂N, �̂2

1, �̂
2
2, . . . , �̂

2
N ]. By

assuming that the measurement noises are statistically independent, the likelihood function is
given by:

p(D|b0, b1, b2, T1, T2, . . . , TN, C) = (2πσT )−N
N∏

n=1

σ−1
�2

n

× exp

[
− 1

2σ2
�2

n

N∑
n=1

(b0 + b1Tn + b2T 2
n − �̂2

n)2 − 1

2σ2
T

N∑
n=1

(Tn − T̂n)2

]

(2.165)

where �̂2
n and σ�2

n
are the identified squared fundamental frequency and its associated standard

derivation of the nth measurement obtained from the Bayesian spectral density approach. The
variable T̂n is the corresponding measurement of the temperature. Then, by the Bayes’ theorem,
the updated PDF of the uncertain parameters is given by:

p(b0, b1, b2, T1, T2, . . . , TN |D, C) = κ0p(b0, b1, b2, T1, T2, . . . , TN |C)

×p(D|b0, b1, b2, T1, T2, . . . , TN, C) (2.166)

In this study, a non-informative prior PDF for the uncertain parameters is used and the prior
PDF is absorbed into the normalizing constant. Then, the updated PDF is proportional to the
likelihood function:

p(b0, b1, b2, T1, T2, . . . , TN |D, C) ∝ p(D|b0, b1, b2, T1, T2, . . . , TN, C) (2.167)

To obtain the optimal parameters, the objective function is defined as the negative logarithm of
the likelihood function without taking the terms that do not depend on the uncertain parameters:

J(b0, b1, b2, T1, T2, . . . , TN ) =
N∑

n=1

[
1

2σ2
�2

n

(b0 + b1Tn + b2T 2
n − �̂2

n)2 + 1

2σ2
T

(Tn − T̂n)2

]

(2.168)

The optimal values can be obtained by minimizing the objective function but this optimization
problem is nonlinear. However, the solution can be obtained by solving a series of linear
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optimization problems. First, the conditional optimal values of the uncertain coefficients can
be found by solving ∂J(θ)/∂b = 0 and it gives the following linear algebraic equation:
⎡
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On the other hand, the conditional optimal value for Tn can be found by solving ∂J(θ)/∂Tn = 0,
n = 1, 2, . . . , N, and it gives the following cubic equation:

2b2
2

σ2
�2

n

T 3

n + 3b1b2

σ2
�2

n

T 2

n +

[
2b2(b0 − �̂2
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�2

n

+ 1

σ2
T

]
T 


n + b1(b0 − �̂2
n) + b1

σ2
�2

n

− T̂n

σ2
T

= 0

(2.170)
Given the values of b0, b1 and b2, this cubic equation can be solved analytically. If there are
three real roots, the one closest to T̂n should be taken.

The optimization problem can be solved as follows. First, take Tn = T̂n, for n = 1, 2, . . . , N,
and then the conditional optimal values of the coefficients b0, b1 and b2 can be obtained by
solving Equation (2.169). By plugging these values into Equation (2.170), the conditional
optimal values of the effective temperatures can be updated. This procedure is repeated un-
til convergence is achieved. Furthermore, the Hessian matrix of the objective function J in
Equation (2.168) at the optimal values is given by:

H(θ
) =
[
Hb HbT

HT
bT HT

]
(2.171)

where the submatrix Hb is given by
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(2.172)

The (l, n) components of the submatrix HbT , l = 1, 2, 3; n = 1, 2, . . . , N, are given by:

H(1,n)
bT = σ−2

�2
n

(2.173)
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and HT is a diagonal matrix with (n, n) component:
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For large N, the posterior PDF can be approximated by Gaussian distribution and its covariance
matrix is given by the inverse of the Hessian matrix.

2.6.4 Analysis of the Measurements

Influenced by the subtropical climate and seasonal monsoon, the weather of Macao changes
from hot and humid to cool and dry from Summer to Winter. A monitoring project was accom-
plished for a 22-story residential building, namely the East Asia Hall, from June to November
in 2008. It was inaugurated for lodging athletes during the 4th East Asian Games held in 2005
and started to serve as a student dormitory of the University of Macau afterwards. The East
Asian Hall is a reinforced concrete building with an L-shape floor plan and the two spans have
different lengths. The height and the two spans are 64.70 m, 51.90 m and 61.75 m, respectively.

Acceleration time histories of the East Asian Hall were observed daily from 23:00 to 23:30
throughout the monitoring period. The data were taken around midnight to minimize the spatial
variation of the temperature. Two state-of-the-art servo-accelerometers, which operate based
on an exploration geophone spring–mass system, are mounted in two orthogonal directions at
the junction of the two spans on the 18th floor. The sensitivity of the overall acquisition system
is 50V/g and the sampling interval is 0.002 s.

The Bayesian spectral density approach for parametric identification and model updating
regression analysis are applied. During the monitoring period, four typhoons ‘flitted’ over
Macao. The structural behavior under such violent wind excitation is treated as discordance
and the measurements obtained under these events are not taken into account for the analysis.
By excluding these fifteen days of measurements, there are 168 pairs of identified squared
fundamental frequency and measured temperature in the data set. Figure 2.28(a) shows the
variation of the identified squared fundamental frequencies with their associated uncertainties
represented by a confidence interval that is bounded by the plus or minus three standard
derivations from the estimated values. It is noticed that this confidence interval contains 99.7%
of the probability. Since the confidence intervals are narrow compared with the variation
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Figure 2.28 Squared fundamental frequency and temperature
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Table 2.2 Identification result of the quadratic function coefficients

Parameter b0 b1 b2

Estimated value 2.24 −0.000 384 0.001 13
COV 0.0030 0.015 0.011

of the identified values, this indicates that beyond the statistical uncertainty, the natural
frequency is influenced by other factors. The difference between the maximum and minimum
of the squared fundamental frequency is approximately 13% and this may be considered
as an ‘alarm of damage’. On the other hand, by comparing the fluctuation of the squared
fundamental frequency and the ambient temperature, as shown in Figure 2.28(b), there is
strong correlation between the two variables. This confirms that the ambient temperature is an
important factor that has to be considered in the development of a reliable dynamic monitoring
system.

By using the Bayesian methodology described in Section 2.6.3, the coefficients of the
quadratic function are identified and they are shown in Table 2.2. Furthermore, the associ-
ated uncertainty can also be quantified and the coefficients of variation (COV) are also shown
in the table. Figure 2.29 shows the squared fundamental frequency–temperature quadratic
relationship with the optimal values of the coefficients. The identified squared fundamental
frequencies and the measured temperatures are represented by the dots. A concave parabolic
curve is obtained from the regression analysis, and most of the data points fall in the mono-
tonically increasing region. Note that this curve is valid only in the range from 15◦C to 30◦C
where into most of the data points fall. To extend the applicable region, measurements with
lower or higher temperatures will be necessary.
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Figure 2.29 Identified squared fundamental frequency versus temperature and the best fitting curve
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2.6.5 Concluding Remarks

In order to develop a reliable structural health monitoring system, it is essential to investigate
the ambient effects on the structural behavior. In this study, the Bayesian method was applied
to establish the relationship between the squared fundamental frequency and the ambient
temperature. It started with the approximation of the Timoshenko beam and it turned out
that the relationship is adequately modeled by a quadratic function. By utilizing six-month
daily structural acceleration time histories of a 22-story residential building, the uncertain
coefficients were obtained. It was observed that the squared fundamental frequency exhibits
13% difference during the monitoring period and the variation follows a similar pattern as that
of the ambient temperature. By the regression analysis, a concave relationship was found and
most of the data points fall in the monotonically increasing region. The method does not only
identify the optimal estimates, but also allows for quantification of the associated uncertainty.

2.7 Application to Noise Parameters Selection for the Kalman Filter

2.7.1 Problem Description

The Kalman filter was developed by Kalman and Bucy for predicting and filtering random
signals of linear systems [128, 129]. Thereafter, the extended Kalman filter was applied to sys-
tem identification for linear or slightly nonlinear dynamic systems, in addition to its capability
of state estimation, in many disciplines of science and engineering [57, 179, 190, 250]. The
Kalman filter has become a popular tool in structural identification [89, 110, 238, 258] because
it provides not only the response prediction and the estimation of the model parameters but
also their associated uncertainties. In addition, the algorithm is online, i.e., the model is up-
dated with new data points at every time step. However, the process noise and measurement
noise parameters of the Kalman filter are usually assumed to be known [110, 156] and this
assumption is difficult to be fulfilled in some of the applications. Different choices of the mea-
surement noise parameters were demonstrated to affect the performance of the Kalman filter
[111]. Therefore, recent attention has been devoted to the estimation of these parameters for the
Kalman filter. Shi et al. (2000) formulated the extended Kalman filter in the frequency domain
to estimate the process noise parameter by including the mechanical parameters and the spectral
intensity in an augmented state vector for single-degree-of-freedom (SDOF) systems [236].
Ching et al. (2004) applied the expectation maximization technique [239] to estimate the mea-
surement noise parameter [53]. However, there is currently no methodology to estimate both
noise parameters of the Kalman filter simultaneously for multi-degree-of-freedom systems. In
this section, a Bayesian methodology is introduced to update these unknown parameters. First,
the fundamentals of the Kalman filter will be presented in the next section.

2.7.2 Kalman Filter

In this section the basic principles of the Kalman filter are presented for linear multi-degree-
of-freedom (MDOF) systems. More details can be found elsewhere [36, 84, 128, 129]. Even
though it is not often emphasized and it was not shown explicitly in the original formula-
tion [128, 129], the Kalman filter is a Bayesian updating procedure. Consider a second-order
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linear system with Nd degrees of freedom (DOFs) and its equation of motion:

Mẍ(t) + Cẋ(t) + Kx(t) = T0F(t) (2.177)

where x denotes the generalized coordinate vector of the system, and M, C and K are the mass,
damping and stiffness matrix of the system, respectively; T0 and F are the force distributing
matrix and the excitation, respectively. The state vector X is defined to include the displacement
and velocity vector:

X(t) ≡ [x(t)T , ẋ(t)T ]T (2.178)

Then, Equation (2.177) can be transformed to the state-space form:

Ẋ(t) = AcX(t) + BcF(t) (2.179)

where the matrices Ac and Bc are given by:

Ac =
[

0 I

−M−1K −M−1C

]

Bc =
[

0

M−1T0

]
(2.180)

Equation (2.179) can be discretized to a difference equation by assuming that the excitation is
constant within any time interval, i.e., F(n�t + τ) = F(n�t), ∀τ ∈ [0, �t), n = 0, 1, 2, . . .

Xn+1 = AXn + BFn (2.181)

where the matrices A and B are given by:

A = exp(Ac�t)

B = A−1
c (A − I)Bc (2.182)

Note that the matrix exponential can be computed by the function ‘expm’ in MATLAB®

[171]; �t is the sampling time step. In order to simplify the symbols, the following notations
are defined:

Xn ≡ X(n�t)

Fn ≡ F(n�t) (2.183)

The excitation F is modeled as discrete stationary Gaussian white noise with zero mean and
covariance matrix �F (θF ), where θF is a vector which parameterizes the covariance matrix
�F .

To account for the modeling error and measurement noise, the relationship between the
output measurements and the state vector is defined by:

yn = LoXn + εn (2.184)

The observation matrix Lo is No × 2Nd , where No is the number of observed DOFs. For
example, the state vector assembles the displacement vector and the velocity vector of the
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system, whereas the output measurement can be the absolute acceleration of No (< Nd) DOFs
of a structure subjected to earthquake ground motion. The measurement noise ε is assumed
to be a Gaussian, independent and identically distributed (i.i.d.) process with zero mean and
covariance matrix �ε(θε), where θε is a vector which parameterizes the covariance matrix
�ε. Furthermore, it is assumed to be statistically independent to F. The essential steps of the
Kalman filter algorithm are to predict and filter at each time step with the data set DN =
{y1, y2, . . . , yN}. When the measurements up to the nth time step Dn = {y1, y2, . . . , yn} are
available, the predicting procedure is applied to estimate yn+1 by using the conditional PDF
p(Xn+1|Dn, C), which is multi-variate Gaussian for linear systems. By using Equation (2.181),
the predicted state vector at the (n + 1)th time step can be estimated from the filtered state at
the nth time step:

X̂n+1|n ≡ E[Xn+1|Dn, C] = AX̂n|n (2.185)

where X̂n|n ≡ E[Xn|Dn, C]. In addition, the uncertainty of this estimation is represented by
its covariance matrix:

Pn+1|n ≡ E[(Xn+1 − X̂n+1|n)(Xn+1 − X̂n+1|n)T |Dn, C] = APn|nAT + B�F BT (2.186)

where Pn|n ≡ E[(Xn − X̂n|n)(Xn − X̂n|n)T |Dn, C] represents the filtered state covariance ma-
trix at the nth time step using the measurements up to the nth time step. When the measurement
at the (n + 1)th time step is available, the filtered state vector X̂n+1|n+1 can be found by max-
imizing the conditional PDF p(Xn+1|Dn+1, C):

X̂n+1|n+1 = Pn+1|n+1(P−1
n+1|nX̂n+1|n + LT

o �−1
ε yn+1) (2.187)

and the uncertainty of this estimation is represented by its covariance matrix:

Pn+1|n+1 = (P−1
n+1|n + LT

o �εLo)−1 (2.188)

Obviously, the accuracy of the state estimation and their covariance matrices depend on the
process noise and measurement noise parameters but these parameters are unknown in practice.
Here, the Bayesian approach is used to select these noise parameters.

Let θ = [θT
F , θT

ε ]T be the parameter vector that determines the covariance matrices �F and
�ε. Since D = DN , Equation (2.19) can be rewritten as:

p(θ|DN, C) = κ0p(θ|C)p(DN |θ, C) (2.189)

where C is a prescribed class of models for the system, p(θ|C) denotes the prior PDF of the
parameters and κ0 is the normalizing constant. Here, a non-informative prior is taken for the
parameter vector θ, so it can be absorbed into the normalizing constant κ0. Therefore, the most
probable parameter vector θ
 can be found by maximizing the likelihood function p(DN |θ, C).
The likelihood function p(DN |θ, C) reflects the contribution of the measured data D in estab-
lishing the posterior PDF of θ. In order to enhance the computational efficiency, the likelihood
function can be expressed as the product of the conditional PDFs of the measurements given
all the previous time steps [288]:

p(DN |θ, C) =
N∏

n=1

p(yn|y1, y2, . . . , yn−1, θ, C) (2.190)
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where the conditional PDFs are given by:

p(yn|y1, y2, . . . , yn−1, θ, C) = (2π)−
No
2 |Qn|− 1

2 exp

[
−1

2
(yn − ŷn|n−1)T Q−1

n (yn − ŷn|n−1)

]

(2.191)
The one-step-ahead estimator ŷn|n−1 ≡ E[yn|Dn−1, C] can be expressed in terms of the esti-
mator X̂n|n−1 by using Equation (2.184):

ŷn|n−1 ≡ E[yn|Dn−1, C] = LoX̂n|n−1 (2.192)

In addition, the covariance matrix Qn appearing in Equation (2.191) is a linear combination
of Pn|n−1 and �ε:

Qn ≡ E[(yn − ŷn|n−1)(yn − ŷn|n−1)T |Dn−1, C] = LoPn|n−1LT
o + �ε (2.193)

Although the matrix �F does not explicitly appear in the above expressions, its influence on
the likelihood function is reflected in the covariance matrices Pn|n−1 and Qn. Since a non-
informative prior distribution is used, the objective function J can be defined as the negative
logarithm of the likelihood function without including the constant term:

J(θ) = 1

2

N∑
n=1

ln
∣∣LoPn|n−1LT

o + �ε

∣∣ +

1

2

N∑
n=1

[
(yn − LoX̂n|n−1)T (LoPn|n−1LT

o + �ε)−1(yn − LoX̂n|n−1)
]

(2.194)

The optimal parameter vector θ
 can be found by minimizing the objective function J . Fur-
thermore, the updated PDF allows one to quantify the uncertainty of the estimation, e.g., to
calculate the standard deviation or the contours with equal probability density.

2.7.3 Illustrative Examples

2.7.3.1 SDOF System Subjected to Unknown Input

A single-degree-of-freedom (SDOF) system is subjected to zero-mean stationary white noise
excitation with spectral intensity SF0 = 0.0048 N2 s. The mass, damping coefficient and stiff-
ness are taken to be M = 1.0 kg, C = 0.4π N s/m, and K = (4π)2 N/m so that the natural
frequency and damping ratio of the system are 2.0 Hz and 5.0%, respectively. Its velocity is
sampled at a rate of 100 Hz for 10 s. To generate the time history of the velocity measurement,
10% of the rms noise is superimposed onto the velocity time history, i.e., the root-mean-square
(rms) of the measurement noise is equal to 10% of the rms value of the noise-free velocity of
the oscillator. The actual values of σ̃2

F and σ̃2
ε are 3.0 N2 and 4.8 × 10−5 m2 s−2, respectively.

To verify the result produced by the Kalman filter, the time histories of the displacement and
the velocity estimated by the Kalman filter are compared to their actual values in Figures 2.30
and 2.31, respectively. Here, the actual values of the noise variances are used. The solid lines
in both figures represent the actual response, whereas the dotted lines represent the response
estimated by the Kalman filter. It is noted that the estimated velocity in Figure 2.31 is close to
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Figure 2.30 Actual and estimated displacement time history

the actual velocity with an rms error of 9.95%, which is virtually the same as the measurement
noise level. In addition, the displacement estimated from the Kalman filter in Figure 2.30 is
close to the time history of the actual displacement except for the first few iterations that the
Kalman filter has not yet obtained sufficient information to update the response. However,
the rms error of 0.0011 m, corresponding to a 22.4% error, is large compared to the rms of
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Figure 2.31 Actual and estimated velocity time history
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0.0049 m for the displacement time history. The large rms error is due to the deviation between
the two time histories at the first few time steps. To confirm this, the rms error is again com-
puted by ignoring the data in the first second. The rms error of the predicted displacement is
0.0007 m and the rms of the actual displacement is 0.0050 m. The rms error is 14.0% of the
rms of the noise-free displacement.

Next, the effect of the choice for the values of σ2
F and σ2

ε on the model performance is
studied by comparing the rms errors associated with different combinations of σ2

F and σ2
ε . An

extra second of data is generated but the state estimation in the first second will be ignored in
the calculation of the rms errors to avoid the transient state of the Kalman filter as observed
earlier. The variables αF and αε denote the following ratios:

αF = σ2
F

σ̃2
F

; αε = σ2
ε

σ̃2
ε

(2.195)

where σ̃2
F and σ̃2

ε are the actual process noise and measurement noise variance. Table 2.3 shows
the rms errors of the estimated displacements and velocities for six combinations of σ2

F and
σ2

ε . The first row with unity ratios of αF and αε represents the case that the actual values
of σ2

F and σ2
ε are utilized. When the actual process noise and measurement noise variances

are overestimated/underestimated by the same factor, i.e., αF = αε = 10, it is found that the
rms errors for both the displacement and the velocity remain unchanged. Specifically, by
Equations (2.185) – (2.188), it can be shown that the state vector estimation will be identical
if the initial covariance matrix, the process noise and the measurement noise variances are
multiplied by the same factor.

When αF = 10 and αε = 1, the rms error of the displacement slightly decreases whereas the
rms error of the velocity slightly increases. In addition, when αF = 100 and αε = 1, the rms
error of the displacement further decreases while the rms error of the velocity again slightly
increases. Increasing the process noise variance tends to affect the estimation of the velocity
more than the estimation of the displacement. On the other hand, it can be shown that the rms
error of the estimated displacement/velocity associated with αF = 100 and αε = 1 is equivalent
to that with αF = 10 and αε = 1/10. The effect of underestimation of the process noise variance
is the same as that due to the overestimation of the measurement noise variance. When αF = 1
and αε = 10, it is found that both the rms errors of the displacement and the velocity increase. In
addition, the rms errors further increase when αF = 1 and αε = 100. Therefore, it is concluded
that overestimating the measurement noise parameter or underestimating the process noise
variance will increase the rms errors of the displacement and velocity significantly.

Table 2.3 RMS errors of the estimated displacements and velocities for different values of αF and αε

αF αε RMS error of displacement (m) RMS error of velocity (m/s)

1 1 0.0007 0.0067
10 10 0.0007 0.0067
10 1 0.0006 0.0070
100 1 0.0005 0.0071
1 10 0.0009 0.0103
1 100 0.0016 0.0214
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Figure 2.32 Contours of the likelihood function

As demonstrated previously the process noise and the measurement noise parameters directly
affect the state vectors estimated by the Kalman filter. Furthermore, the covariance matrix of
the state estimation is affected as well. Therefore, accurate estimation of the noise parameters is
necessary for good performance of the filter. In this example, the Bayesian approach is applied
to select σ2

F and σ2
ε . Figure 2.32 shows the contours of the likelihood function p(D|θ, C)

together with the actual noise variances θ̃ = [σ̃2
F , σ̃2

ε ]T and its optimal estimate θ
. The two
contours correspond to 50% and 10% of the peak value. The optimal values of σ2

F


 = 2.8N2

and σ2
ε


 = 7.1 × 10−5m2/s2 are at reasonable distance to the actual values as the actual noise
variances are located within the region with significant probability density. Therefore, the
Bayesian approach is validated to give accurate estimation for both noise variances for the
linear oscillator.

2.7.3.2 Ten-Story Building Subjected to Ground Acceleration

The second example uses a ten-story shear-building model. It has equal floor mass and
interstory stiffness distributed over all stories. The building is subjected to base acceleration
adequately modeled by stationary Gaussian white noise excitation with spectral intensity
SF0 = 1.6×10−3 m2/s3. The building has stiffness-to-mass ratio of 4016 s−2 so that its funda-
mental frequency is 1.5 Hz. The Rayleigh damping model is assumed, i.e., the damping matrix
is given by C = α1M + α2K, where M and K are the mass and stiffness matrix, respectively.
The values of α1 and α2 are taken to be 0.0709 s−1 and 2.66 × 10−4 s so that the damping ratios
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Figure 2.33 Actual and estimated displacement time histories of the 2nd and 9th floors

of the first two modes are 0.5%. By using the absolute acceleration measurements on the 1st,
4th, 7th, and 10th floors, it is attempted to estimate the displacement and the velocity of each
floor. The rms of the measurement noise is taken to be 5% rms of the noise-free acceleration
of the top floor. The accelerations are measured with a sampling frequency of 100 Hz
for 10 s.

Figure 2.33 (Figure 2.34) shows the comparison between the displacement (velocity) esti-
mated with the actual noise variances and their corresponding actual curves of the 2nd and
9th floors. The solid lines represent the actual displacement or velocity, whereas the dotted
lines represents its Kalman estimation but the two sets of curves are on top of each other. The
observation is further supported by the small rms errors which are only 2.59% and 2.41% of
the rms values of the displacements for the 2nd floor and the 9th floor, respectively. In addition,
the estimated velocities also agree well with the actual velocities as can be seen in Figure 2.34.
The rms errors are 9.44% and 5.47% of the rms values of the velocities for the 2nd floor and
the 9th floor, respectively. In conclusion, the Kalman filter is validated to provide an accurate
state estimation for the linear MDOF system.

The Bayesian approach is applied to the selection of σ2
F and σ2

ε . Figure 2.35 shows the con-
tours, corresponding to 50% and 10% of the peak value, of the likelihood function together with
the actual parameter and its optimal estimate. The optimal values of σ2

F



and σ2

ε



are 1.02 m2/s4

and 1.22×10−2 m2/s4, which are close to the actual values (1.00 m2/s4 and 1.27×10−2 m2/s4)
in the sense that the actual parameters are located within the region with significant probability
density. Therefore, the Bayesian approach is confirmed to give accurate estimation for both
noise variances.
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Figure 2.34 Actual and estimated velocity time histories of the 2nd and 9th floors
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2.7.3.3 Half-or-double Optimization Algorithm

An alternative optimization approach, regarded as half-or-double optimization algorithm
herein, is applied. The initial parameter vector θ0 = (σ2

F0, σ
2
ε0) is chosen arbitrarily and it is

taken to be (1, 1) in this example. Then, the objective function in Equation (2.194) is evaluated
for the center point and the eight neighboring points:

{(σ2
F , σ2

ε ) ∈ R2|σ2
F = σ2

F0αF , σ2
ε = σ2

ε0αε, αF , αε = 1/2, 1, 2}

and the candidate parameter vector is the one that gives the smallest objective function value. If
a point (σ2

F0αF , σ2
ε0αε) gives a smaller objective function value than the center point (σ2

F0, σ
2
ε0),

then the point (σ2
F0/αF , σ2

ε0/αε) is no longer required for evaluation due to the convexity of
the objective function. After the candidate parameter vector is obtained, it is used as the
initial parameter vector in the next iteration. However, it does not require evaluating all the
eight neighboring points as some of them were already evaluated in the previous iteration.
Specifically, if the candidate vector in the previous iteration was a corner point (i.e., αF /= 1
and αε /= 1), then five neighboring points will have to be evaluated. Otherwise, only three
neighboring points will have to be evaluated. The iteration procedure is repeated until the
candidate parameter vector remains the same. Use θ′ to denote this sub-optimal parameter
vector and they are σ2

F

′=1.00 m2/s4 and σ2
ε

′=1.56 × 10−2 m2/s4 in this example. The rms
errors of the displacements and the velocities estimated with the optimal and the sub-optimal
parameters θ
 and θ′ as shown in Table 2.4 are very close to the rms errors of the displacements
and the velocities estimated with the actual noise parameter vector. Therefore, the half-or-
double optimization algorithm is an alternative for optimization in practice.

2.8 Application to Prediction of Particulate Matter Concentration

2.8.1 Introduction

Nowadays, degradation of air quality is widely observed in most urban areas due to rapid
population growth and economic development. As more goods and services are produced,
energy is consumed in the fuel combustion processes. At the same time, air pollutants such as
particulates, sulfur dioxide, nitrogen dioxide or carbon monoxide are generated and released
to the atmosphere. When the air pollutants enter human bodies, they may cause adverse health
effects such as bronchitis, asthma, and heart disease, etc. [66, 67]. According to the statis-
tics provided by the World Health Organization (WHO), three million people face terminal
health problems worldwide annually by the outdoor air pollution from vehicles and indus-
trial emissions. With such relevance to human health, it necessitates the development of an
air quality prediction system since an accurate air quality forecast helps people reduce/cancel
outdoor activities on the days of high pollutant concentrations. Meanwhile, more effective and
suitable emission control strategies can be implemented if the future air quality is known in
advance. Currently, many cities in Canada and the USA have regulations in place to curtail
industrial and other activities during times of observed poor air quality. In Canada, the Alberta
Environment asked the industry to cut production during morning hours of poor air quality
in Calgary and Edmonton. In the United States, an ozone action day is called by the State or
Local Air Quality Agency when ozone levels are forecasted to reach unhealthy levels. During
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Table 2.4 RMS errors of the estimated displacements and velocities

Using the actual Using the optimal Using the sub-optimal
RMS error parameters parameters by the half-or-double algorithm

x1 5.99 × 10−5 5.99×10−5 5.98×10−5

x2 1.11 × 10−4 1.11 × 10−4 1.11 × 10−4

x3 1.57 × 10−4 1.57 × 10−4 1.57 × 10−4

x4 1.96 × 10−4 1.96 × 10−4 1.96 × 10−4

x5 2.31 × 10−4 2.31 × 10−4 2.31 × 10−4

x6 2.61 × 10−4 2.61 × 10−4 2.61 × 10−4

x7 2.86 × 10−4 2.86 × 10−4 2.86 × 10−4

x8 3.06 × 10−4 3.06 × 10−4 3.06 × 10−4

x9 3.20 × 10−4 3.20 × 10−4 3.20 × 10−4

x10 3.27 × 10−4 3.27 × 10−4 3.27 × 10−4

ẋ1 6.01 × 10−3 6.02 × 10−3 6.03 × 10−3

ẋ2 5.97 × 10−3 5.97 × 10−3 5.97 × 10−3

ẋ3 6.20 × 10−3 6.20 × 10−3 6.20 × 10−3

ẋ4 6.38 × 10−3 6.39 × 10−3 6.39 × 10−3

ẋ5 6.52 × 10−3 6.53 × 10−3 6.53 × 10−3

ẋ6 6.67 × 10−3 6.68 × 10−3 6.68 × 10−3

ẋ7 6.81 × 10−3 6.81 × 10−3 6.81 × 10−3

ẋ8 6.93 × 10−3 6.93 × 10−3 6.93 × 10−3

ẋ9 7.05 × 10−3 7.06 × 10−3 7.05 × 10−3

ẋ10 7.17 × 10−3 7.17 × 10−3 7.17 × 10−3

‘ozone-action’ days, the State or Local Authority encourages the community to take simple
voluntary actions to help reducing ground level ozone and hence preventing violation of the
National Ambient Air Quality Standards (NAAQSs) [192]. Therefore, the development of an
air quality predicting system plays an important role in fulfilling these objectives.

Macao is a coastal city on the West side of the Pearl River Delta Region. It has a geographical
area of 28.6 km2 and a population of 510 000. Five air pollutants (PM10, SO2, NOx, O3 and CO)
are monitored by the Government Department entitled the ‘Meteorological and Geophysical
Bureau’ since 1999. PM10 is a collective noun for the particles with an aerodynamic diameter
of not greater than 10 �m and it is the most dominant air pollutant among them, especially in
winter. Figure 2.36 shows the daily averaged PM10 concentrations between 2001 and 2005. It
is noted that there is a distinct seasonal pattern, i.e., high PM10 concentrations are generally
observed in winter. Mok and Hoi (2005) found that the seasonal behavior was associated with
the swing of the prevailing wind directions caused by the Asian monsoon climates [182]. The
monsoon driven winter north-easterly winds bring upon Macao dry and particle enriched air
masses leading to higher concentration in that period while the summer south-westerly winds
transport humid and clean air from the South China Sea to the region leading to lower values
of PM10 [182]. Table 2.5 shows the statistics of daily PM10 concentrations between 2001 and
2005. It is noted that the annual PM10 concentration generally increases during the studied
period and the average increment, which is obtained from the slope of the best-fit straight
line across the data points, is 2.8 �g m−3/yr. However, there is no obvious trend observed
for the maxima and minima of the daily averaged PM10 concentrations. The daily averaged
PM10 concentration does not only depend on the amount of emission in the given area. It is
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Figure 2.36 Daily averaged PM10 concentrations (2001–2005)

also affected by the meteorological conditions which control how much foreign pollutant is
brought in and how much local pollutant is transported away. Meanwhile, the meteorological
conditions also affect the dilution capacity of the atmosphere. On the contrary, the annual
concentration should be less affected by those factors since it is averaged over a longer time
period. In other words, the operation of averaging can help smooth the variation in the PM10
concentration due to the short-term changes in the meteorological conditions. Therefore, it is a
useful indicator to reflect the interannual variability of PM10 pollution in Macao. Concluding
from the annual PM10 concentration between 2001 and 2005, the PM10 pollution in Macao is
worsening during the studied period.

The last column in Table 2.5 shows the number of days with non-attainment of the air
quality standard. Non-attainment is assigned to a particular day when the daily averaged PM10

Table 2.5 Statistics of daily averaged PM10 concentrations between 2001 and 2005

Year Average Maximum Minimum No. of non-attainment days

2001 56.7 227.0 6.4 5
2002 50.3 203.5 8.8 2
2003 59.2 201.5 9.8 16
2004 67.0 197.1 9.3 20
2005 62.2 217.4 7.1 14
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concentration exceeds the threshold of 150 �g m−3 specified in the National Ambient Air
Quality Standards (NAAQSs) established by the Environmental Protection Agency of the
United States (USEPA). The NAAQS standards are adopted here since currently there is not
any relevant standard for PM10 in Macao. It is noted that the percentage of days with non-
attainment of the PM10 standard increases at a rate of 0.98% per year. The rise in the number
of PM10 episode days between 2001 and 2005 coincides with the booming of the Macao
economy as there is a 71.0% increase in the GDP per capita of Macao from USD 14 253 to
USD 24 369 [163]. The increase in the economic activities leads to extra energy consumption
and the subsequent increase in PM10 pollution. Therefore, the problem of PM10 pollution in
Macao is severe and has raised our concern. To tackle the current circumstances, an initial step
is to develop an air quality prediction system so that citizens can have chances to minimize the
time of exposure to the air pollutants on the PM10 episode days.

Successful applications of the Kalman filter in air quality studies can be found in the lit-
erature [6, 190, 303]. The objective of the present study is to probe the applicability of the
extended Kalman filter to perform state estimation for the time-varying statistical models. In
this study, the extended Kalman filter is implemented on two different model classes, namely
the time-varying auto-regressive (TVAR) model and the time-varying auto-regressive model
with exogenous input (TVAREX). These models are tested with the daily averaged PM10
concentrations and the meteorological data provided by the Macao Meteorological and Geo-
physical Bureau [162]. The PM10 data were recorded by using the Tapered Element Oscillating
Microbalance (TEOM) at the ambient monitoring station of Macao. It is located at the Taipa
Grande Hill which has an altitude of 158.2 m. Therefore, its measurements are representa-
tive for indicating the general ambient air quality of Macao. The prediction results of the
time-varying models are compared with the results obtained from the artificial neural network
algorithm, which has been demonstrated previously as being a successful tool in the area of
air quality prediction [83, 97, 107, 122, 184, 193, 206]. In the following section, two statistical
model classes are presented.

2.8.2 Extended-Kalman-filter based Time-varying Statistical Models

2.8.2.1 TVAR(p) Model

In this section, the extended Kalman filter is formulated for the time-varying auto-regressive
model of order p, which is abbreviated as the TVAR(p) model:

xn = θ1,n−1xn−1 + θ2,n−1xn−2 + · · · + θp,n−1xn−p + fn−1 (2.196)

where xn denotes the daily averaged PM10 concentration of the nth day. The input f repre-
sents the unmodeled dynamics, and it is modeled as a Gaussian independent and identically
distributed (i.i.d.) process with zero mean and variance σ2

f . It represents the neglected factors
that influence the PM10 concentration. In addition, it is assumed that the measurement of the
PM10 concentration, denoted as yn, is contaminated during the measurement process. The
relationship between yn and xn is given by:

yn = xn + εn (2.197)
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where ε is the measurement noise and it is also modeled as a Gaussian i.i.d. with zero mean
and variance σ2

ε . Furthermore, the stochastic processes f and ε are assumed independent. The
TVAR(p) model simply implies that the PM10 concentration of a day is a weighted sum of its
concentrations of the previous p days and the weightings are represented by the time-varying
auto-regressive coefficients θl,n. These unknown coefficients evolve according to the following
equation:

θl,n = θl,n−1 + wl,n−1 (2.198)

where wl,n−1 denotes the variation of the coefficient θl,n−1 on the (n − 1)th day. The
stochastic process w is modeled as a Gaussian i.i.d. with zero mean and covariance matrix
diag(σ2

w1, σ
2
w2, . . . , σ

2
wp). Then, the state vector Xn is defined to contain the PM10 concentra-

tions of different days and the unknown coefficients to be estimated [104]:

Xn = [xn, xn−1, . . . , xn−p+1, θ1,n, θ2,n, . . . , θp,n]T (2.199)

The measurement yn can be expressed in terms of Xn in the following form:

yn = LoXn + εn (2.200)

where the observation matrix Lo is a row vector in this case:

Lo = [1, 01×(2p−1)] (2.201)

Also, the process noise vector Fn is defined to contain the process noises fn and wl,n, l =
1, 2, . . . , p:

Fn = [fn, w1,n, w2,n, . . . , wp,n]T (2.202)

It is readily followed that Fn is Gaussian with zero mean and covariance matrix �F :

�F = diag(σ2
f , σ2

w1, σ
2
w2, . . . , σ

2
wp) (2.203)

Then, the TVAR(p) model in Equation (2.196) can be linearized locally to a first-order TVAR
vector model:

Xn = Ân−1|n−1Xn−1 + BFn−1 + Ĝn−1|n−1 (2.204)

The matrix Ân−1|n−1 denotes the estimator of the matrix A on the (n − 1)th day, conditional
on the measurements y1, y2, . . . , yn−1. It is noted that the same notation is used to denote the
other estimators conditional on the given measurements. The matrices Ân−1|n−1 and B are
given by:

Ân−1|n−1 =

⎡
⎢⎣

θ̂1,n−1|n−1 · · · θ̂p,n−1|n−1 x̂n−1|n−1 · · · x̂n−p|n−1

Ip−1 0(p−1)×(p+1)

0p×p Ip

⎤
⎥⎦ (2.205)

B =

⎡
⎢⎣

1 01×p

0(p−1)×(p+1)

0p×1 Ip

⎤
⎥⎦ (2.206)
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where θ̂l,n−1|n−1 and x̂n−1|n−1 denote the estimator of the lth AR coefficient and the PM10
concentration on the (n − 1)th day, conditional on the measurements y1, y2, . . . , yn−1. It is
noted that the matrix B is constant. The vector Ĝn−1|n−1 is used to compensate the linearization
error:

Ĝn−1|n−1 =
[
−θ̂1,n−1|n−1x̂n−1|n−1 − · · · − θ̂p,n−1|n−1x̂n−p|n−1

0(2p−1)×1

]
(2.207)

With this TVAR vector model, the predicting and filtering steps for the PM10 concentrations can
be performed with the Kalman filter. The essential steps of the Kalman filter are to predict and
filter the measured PM10 concentration alternately. When the measured PM10 concentrations
up to the (n − 1)th day are available, the predicting procedure is applied to give the one-
step-ahead prediction of the PM10 concentration. By using Equations (2.204) and (2.205), the
predicted state vector on the nth day can be estimated from the filtered state vector on the
(n − 1)th day:

X̂n|n−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̂1,n−1|n−1x̂n−1|n−1 + θ̂2,n−1|n−1x̂n−2|n−1 + · · · + θ̂p,n−1|n−1x̂n−p|n−1

x̂n−1|n−1

...

x̂n−p+1|n−1

θ̂1,n−1|n−1

...

θ̂p,n−1|n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.208)

In addition, the uncertainty of the PM10 concentration and the estimated model parameters can
be quantified by the covariance matrix:

Pn|n−1 = Ân−1|n−1Pn−1|n−1ÂT
n−1|n−1 + B�F BT (2.209)

When the measurement on the nth day is available, the PM10 concentration and the model
parameters in the state vector are filtered as follows:

X̂n|n = Pn|n(P−1
n|n−1X̂n|n−1 + σ−2

ε LT
o yn) (2.210)

The uncertainty of the state estimation is represented by its covariance matrix:

Pn|n = Pn|n−1 − 1

σ2
ε + σ2

x,n|n−1

vnvT
n (2.211)

where the vector vn and σ2
x,n|n−1 are the first column vector and the (1, 1) component of the

one-step-ahead prediction covariance matrix Pn|n−1, respectively.
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2.8.2.2 TVAREX Model

In this section, the Kalman filter is implemented on a time-varying auto-regressive model with
exogenous inputs, which is abbreviated as the TVAREX model [105]:

xn = [θ1,n−1xn−1 + θ2,n−1x
′
n−1 + θ3,n−1 exp (−αun − β|φn|)] exp (−θ4,n−1rn) + fn

(2.212)

This model is different from the previous one since the TVAR(p) model is an empirical model
which does not consider the underlying physical mechanism that governs the variation of the
daily averaged PM10 concentrations. On the contrary, the TVAREX model also takes into
account of the meteorological factors which have significant impacts on the daily averaged
PM10 concentrations. In this model the symbol x′

n−1 denotes the hourly averaged PM10
concentration before midnight. It is used to reflect the initial condition of PM10 concentration
on the next day.

The symbols un and |φn| denote the magnitude and the absolute angle of the resultant
wind velocity vector. The resultant wind velocity vector is obtained by the vector sum of the
hourly wind velocity vectors on the day of prediction. The magnitude un is associated with
the dispersion condition of the nth day. It is small under the conditions of low wind speed,
occurrence of reversal in the prevailing wind directions, or a combination of both. When the
wind speed is low, the atmosphere becomes stagnant. The particulates generated from the local
sources or transported from the upwind areas are trapped in the boundary layer and are hardly
removed through advection. When there is a reversal of the prevailing wind directions, the
particulate matters which are located downwind of Macao may be transported back due to
the directional swing. This condition can also enhance the buildup of PM10 concentrations on
the day of prediction. The absolute angle of the resultant wind velocity vector |φn| represents
the dominant wind direction on the day of prediction. For example, the ‘0◦’ refers to the
Geographic True North and an absolute angle of 30◦ includes the angle of +/− 30◦ from it.
Therefore, the entire range of the wind direction is [0◦,180◦]. The absolute resultant angle
indicates the type of the replenishing air masses being transported to Macao. As the angle
increases from 0◦ to 180◦, the dominant wind direction changes from northerly to southerly.
The air pollution problem in Macao is severe since it is located at the southwest of the Pearl
River Delta Region which is composed of several fast developing cities such as Guangzhou
and Shenzhen. Particulate matters can be easily transported to Macao from its nearby upwind
cities when the prevailing winds are blowing from the northerly directions. On the contrary,
Macao is facing the South China Sea located to its South direction. When the winds are blowing
from the South China Sea, Macao is less influenced by the transboundary air pollution from
the cities located to its North. Therefore, the exponential term containing un and |φn| reflects
the contribution from the local sources of Macao as well as the cities nearby. The coefficient
θ3 represents the source strength, while the coefficients α and β represent the decaying rate. It
should be noted that the values of α and β are fixed and those values are specified through the
optimization procedure. Assuming fixed values of α and β ensures that there is a unique most
plausible value for each time-varying coefficient on a given day. In this study, the values of α

and β are taken to be 2928.8 h/km and 297 deg−1, respectively.
Besides the wind effect, precipitation also affects the PM10 concentration as the rainwater

washes out part of the particulate matters from the atmosphere. Therefore, the exponential
term containing the daily rainfall index rn, which is defined as the product of the daily rainfall
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amount and the duration of rainfall on the nth day, is used as a discounting factor on the PM10
concentration for a rainy day. The coefficient θ4 controls the magnitude of reduction for a given
rainfall index. In this study, the exponential relationship between the PM10 concentration and
the meteorological variables is assumed since their relationship is considered nonlinear and a
similar power law was adopted in previous studies [95, 234]. Finally, the term f represents the
modeling error and it is modeled as a Gaussian i.i.d. process with zero mean and variance σ2

f .
The state vector Xn is defined to contain the PM10 concentration and the unknown coeffi-

cients of the nth day:

Xn = [xn, θ1,n, θ2,n, θ3,n, θ4,n]T (2.213)

The measurement yn is also expressed in terms of Xn with the same form as shown in Equa-
tion (2.200), but the observation matrix Lo becomes a row vector:

Lo = [1, 0, 0, 0, 0] (2.214)

Also, the process noise vector Fn is defined to contain the process noises fn and wl,n, l =
1, 2, 3, 4:

Fn = [fn, w1,n, w2,n, w3,n, w4,n]T (2.215)

It has zero mean and covariance matrix �F :

�F = diag(σ2
f , σ2

w1, σ
2
w2, σ

2
w3, σ

2
w4) (2.216)

Again, the state space equation can be linearized to:

Xn = Ân−1|n−1Xn−1 + BFn−1 + Ĝn−1|n−1 (2.217)

The matrices Ân−1|n−1 and B of the TVAREX vector model are:

Ân−1|n−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ̂1,n−1|n−1e1,n x̂n−1|n−1e1,n x̂′
n−1|n−1e1,n e1,ne2,n −rne1,ne3,n

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.218)

B = I5 (2.219)
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where the variables e1,n, e2,n and e3,n are given by:

e1,n = exp (−θ̂4,n−1|n−1rn) (2.220)

e2,n = exp (−αun − β|φn|) (2.221)

e3,n = θ̂1,n−1|n−1x̂n−1|n−1 + θ̂2,n−1|n−1x̂
′
n−1|n−1 + θ̂3,n−1|n−1e2,n (2.222)

The variable e1,n is the estimated discounting factor that represents the scavenging effect
of rainfall on the predicted PM10 concentration for a given value of rn. The variable e2,n

represents the effects of local wind conditions on the predicted PM10 concentration per unit
value of θ̂3,n−1|n−1. The variable e3,n represents the combined contribution to the predicted
PM10 concentration from its past history and the local wind conditions on the day of prediction
when the effect of rainfall is neglected. The compensation vector Ĝn−1|n−1 is:

Ĝn−1|n−1 = [e1,n(θ̂4,n−1|n−1rne3,n − θ̂1,n−1|n−1x̂n−1|n−1), 0, 0, 0, 0]T (2.223)

Then, the extended Kalman filter is operated by applying the predicting and filtering procedure
for each day. By using Equation (2.217), the one-day-ahead prediction of the state vector on
the nth day can be obtained:

X̂n|n−1 = [e1,ne3,n, θ̂1,n−1|n−1, θ̂2,n−1|n−1, θ̂3,n−1|n−1, θ̂4,n−1|n−1]T (2.224)

The covariance matrix of the predicted state vector can be calculated by:

Pn|n−1 = Ân−1|n−1Pn−1|n−1ÂT
n−1|n−1 + B�F BT (2.225)

Finally, the filtered state vector is given by:

X̂n|n = Pn|n(P−1
n|n−1X̂n|n−1 + σ−2

ε LT
o yn) (2.226)

and the uncertainty of the filtered state is represented by the covariance matrix:

Pn|n = Pn|n−1 − 1

σ2
ε + σ2

x,n|n−1

vnvT
n (2.227)

where the vector vn and σ2
x,n|n−1 are the first column vector and the (1, 1) component of the

one-step-ahead prediction covariance matrix Pn|n−1, respectively.

2.8.2.3 Artificial Neural Network Based Prediction Model

The artificial neural network (ANN) based prediction model utilized in the present study is
the multilayer perceptrons (MLPs). It is adopted as the benchmark to compare with the time-
varying statistical models since it has been shown that the MLP architecture could approximate
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any smooth, measurable function between the input and output vectors by a suitable combi-
nation of network parameters [108]. In addition, it has been demonstrated previously as a
successful tool in the area of air quality prediction [83, 97, 107, 122, 184, 193, 206]. It consists
of the input vector X, the hidden layer with the hyperbolic tangent sigmoid transfer function,
the output layer with the linear transfer function, and the network output which is the one-day-
ahead prediction of the daily averaged PM10 concentration. The input vector X is defined as
the column vector which contains the normalized inputs of the TVAREX model as follows:

X = [xn−1, x
′
n−1, un, |φn|, rn]T (2.228)

Each component in the input vector is obtained by normalizing the original variable to have a
maximum and minimum equal to +1 and −1, respectively. These sets of variables are the same
as those in the TVAREX model so comparison between the two models will be fair. When a
given vector X is fed to the MLP model, the input vector to the hidden layer is calculated as
shown below:

η(1) = W(1)X + b(1) (2.229)

The components of the matrix W(1) and the vector b(1) are called the weights and biases of
the layer. Here the hidden layer is denoted as layer 1 and the output layer is denoted as layer
2. Then, the output of the hidden layer is calculated from the transfer function f (1), which is
chosen to be the hyperbolic tangent sigmoid function in this study:

f (1)(η(1)
l ) = exp (η(1)

l ) − exp (−η
(1)
l )

exp (η(1)
l ) + exp (−η

(1)
l )

(2.230)

Now the output of the hidden layer (layer 1) becomes the input to the output layer (layer 2).
The transfer function used in the output layer is the linear function:

f (2)(η(2)) = η(2) (2.231)

where η(2) denotes the input to the transfer function of the output layer. Finally, the one-day-
ahead predicted daily averaged PM10 concentration on the nth day is treated as the output of
the network. The data D includes the N pairs of input vector X and measured daily averaged
PM10 concentration y. By tuning the network weights and biases in each layer with the data
set D, the network is able to approximate the relationship between the input vector X and
the measurement y if the number of data points N is sufficiently large. This is referred to as
the process of training or learning. In this study, the MLP is trained by using the Levenberg–
Marquardt backpropagation algorithm. The parameter vector θ contains the network weights
and biases in the hidden layer and the output layer:

θ = [W (1)
1,1,W

(1)
1,2, W

(1)
1,3, W

(1)
1,4, W

(1)
1,5, b

(1)
1 , . . . , W

(1)
s1,1, W

(1)
s1,2, W

(1)
s1,3, W

(1)
s1,4, W

(1)
s1,5, b

(1)
s1 ,

W
(2)
1,1, W

(2)
1,2, W

(2)
1,3, W

(2)
1,4, W

(2)
1,s1, b

(2)
1 ]T (2.232)
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so the total number of parameters is 7s1 + 1. At the initial step, the parameter vector θ0 is
initialized with random weights and biases. Then, the error vector ε is given by the difference
between the measurements and the network predicted values:

ε(θ) = [y1 − x̂1|0, y2 − x̂2|1, . . . , yN − x̂N|N−1]T (2.233)

and the goodness-of-fit function is given by:

Jg(θ) = 1

N
||ε(θ)||2 (2.234)

The parameter vector is updated recursively by using the following equation:

θk = θk−1 − [J (θk−1)TJ (θk−1) + μk−1I7s1+1]−1J (θk−1)T ε(θk−1) (2.235)

where J = ∂ε/∂θ denotes the Jacobian matrix with respect to the parameter vector θ. In the
iterative process, the coefficient μ0 is initialized with some arbitrary positive value at the
beginning and it is updated according to the following rule:

μk+1 =
{

γμk if Jg(θk) ≥ Jg(θk−1)

μk/γ if Jg(θk) < Jg(θk−1)
(2.236)

In this study, the coefficients μ0 and γ are taken to be 10−3 and 10, respectively. The parameter
vector is kept updated until Jg(θk+1) − Jg(θk) is smaller than a prescribed tolerance or the
maximum number of iterations is reached.

2.8.3 Analysis with Monitoring Data

In this section the air quality prediction models are evaluated based on the daily averaged
PM10 concentrations recorded at the ambient air quality monitoring station in Macao between
2001 and 2005. The station is located at the Taipa Grande Hill, which has an altitude of 159.2
m above sea level. Therefore, the measurements are representative of the general ambient air
quality of Macao. To evaluate the performance of each model, some well-known performance
indices are utilized and they are the root-mean-square error:

RMSE =
√√√√ 1

N

N∑
n=1

(yn − x̂n|n−1)2 (2.237)
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the mean absolute percentage error:

MAPE = 1

N

N∑
n=1

|yn − x̂n|n−1|
yn

× 100% (2.238)

the coefficient of determination:

r2 =
⎡
⎣

∑N
n=1(yn − μy)(x̂n|n−1 − μx)√∑N

n=1(yn − μy)2
√∑N

n=1(x̂n|n−1 − μx)2

⎤
⎦

2

(2.239)

and the index of agreement:

IA = 1 −
∑N

n=1(yn − x̂n|n−1)2

∑N
n=1(|yn − μy| + |x̂n|n−1 − μy|)2

(2.240)

where yn, x̂n|n−1 and N are the measurement of the nth day, the one-day-ahead prediction
of the nth day, and the number of total measured days, respectively. The symbols μy and
μx denote the average of the measurements and predictions, respectively. These performance
indices are widely used to indicate the performance of the air quality prediction models, for
example [97, 107, 122, 184, 191, 193, 234]. In general, good predictive models associate with
small values of RMSE and MAPE, as well as r2 and IA close to unity.

Since the data in 2001 and 2002 are used for training the artificial neural network model,
the performance indices of the TVAR, TVAREX, and ANN models are calculated by using the
data of the following three years. Table 2.6 shows the performance of the TVAR(p) models,
p = 1, 2, . . . , 10. It is noted that the RMSE decreases by 5.6% when the order of the TVAR
model p increases from 1 to 10. However, the values of MAPE and r2 increases by 6.9% and
3.4%, respectively. In addition, the IA value is virtually the same for all values of the model
order p. Since there is no consensus in the performance indices, it is found that increasing the
value of p does not necessarily improve the performance of the TVAR model. Next, the TVAR
models are compared to the TVAREX model and the ANN model.

Table 2.6 Performance of the TVAR models

p RMSE (�g m−3) MAPE (%) r2 IA

1 28.12 34.89 0.59 0.87
2 28.08 35.82 0.58 0.87
3 27.55 36.47 0.59 0.87
4 27.38 36.87 0.59 0.87
5 26.95 36.80 0.60 0.87
6 26.86 36.76 0.60 0.87
7 26.73 36.87 0.60 0.87
8 26.61 36.92 0.61 0.87
9 26.57 37.07 0.61 0.87

10 26.56 37.31 0.61 0.87
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For the ANN-based prediction model, different number of neurons from one and ten are
considered in the hidden layer. As a too simple model class introduces substantial modeling
error and a unnecessarily too complicated model class may lead to over-fitting, the number of
neurons in the hidden layer has to be carefully chosen so that a proper trade-off is achieved
between the accuracy and the robustness. In addition, 100 sets of different initial parameter
vector θ0 are used in the network training for a given number of neurons. Each initial parameter
vector is a column vector containing random weights and biases. Different initial weights and
biases are used to train the network since it is noted in Equation (2.235) that different values
of θ0 may lead to different resultant weights and biases in the network optimization process.
For some of the starting points θ0, they may reach the local minimum during the optimization
process. The 100 sets of initial parameter vector of θ0 are generated to increase the chance of
reaching the global minimum.

Figure 2.37 shows the statistics of the prediction error by ANNs with different numbers of
neurons in the hidden layer. It is noted that the network performance becomes stabilized for
four or more neurons. Kermanshahi (1999) proposed a rule of thumb to decide the number of
hidden neurons as follows [137]:

s
1 = NI + No

2
+ λ (2.241)
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Table 2.7 Performance of time-varying models and ANN model

Model class RMSE (�g m−3) MAPE (%) r2 IA

TVAR(1) 28.12 34.89 0.59 0.87
TVAREX 19.59 26.90 0.79 0.94
ANN 20.50 25.57 0.78 0.92

where NI and No denote the number of elements in the input layer and the output layer,
respectively. The value of λ depends on the user’s judgement and it may be taken as one
or two. In the present study, NI = 5 and No = 1 so the optimal number of hidden neurons
according to the Kermanshahi’s rule of thumb is four or five. This echoes with the previous
observation noted in Figure 2.37. Therefore, the network architecture with four neurons in the
hidden layer is chosen here to compare with the time-varying models.

Table 2.7 shows the statistics of the prediction error by the time-varying models and the
artificial neural network based model. Since the performance of the other TVAR models is
similar to the TVAR(1) model, only the error statistics of the TVAR(1) model are shown here
for comparison. The error statistics of the ANN prediction model are calculated by using the
initial parameter vector which gives the smallest RMSE. By Table 2.7, it is noted that the error
statistics of the TVAREX model and the ANN model are better than those of the TVAR(1)
model. Furthermore, the error statistics of the TVAREX model are slightly better than those
of the ANN model. The values of RMSE and MAPE of the TVAREX model are 30.3% and
22.9% less than those of the TVAR(1) model, respectively. In addition, the values of r2 and
IA of the TVAREX model are 33.9% and 8.1% larger than those of the TVAR(1) model,
respectively. The RMSE and MAPE of the ANN model are 27.1% and 26.7% less than those
of the TVAR(1) model, respectively. The values of r2 and IA of the ANN model are 32.2%
and 5.8% larger than those of the TVAR(1) model, respectively. The variations in the error
statistics are consistent and these values confirm that better prediction models can be obtained
if the meteorological factors are taken into account.

Figure 2.38 shows the time history of measured daily averaged PM10 concentrations and
the predictions by the TVAR(1) model. The solid lines represent the measurements whereas
the dashed lines represent the one-day-ahead predictions. It is noted that there is a time-delay
problem associated with the TVAR(1) model, i.e., the trend of the predictions generally lags
behind the trend of the measurements. The problem arises since the prediction is based solely
on its own past history so no information can be obtained to predict the sudden development of
high concentrations. Furthermore, those influencing factors such as the dispersion condition
and the nature of replenishing air masses which can be continental or oceanic are treated as
the process noises. Therefore, the process noise is large compared with the rms of the signal
and this causes the predicted signal to be delayed.

Figure 2.39 shows the time history of the measured daily averaged PM10 concentration and
the predictions by the TVAREX model. It is found that the time delay problem is generally
resolved. Since the inclusion of the meteorological conditions enhances the effectiveness of
the model, the process noise of the system is reduced and it leads to the improvement of the
model performance. Finally, Figure 2.40 shows the time history of the measured daily averaged
PM10 concentrations and the predictions by the ANN model. By comparing Figures 2.39 and
2.40, the TVAREX model is more efficient in capturing the pollution episode days, which
correspond to the day with a daily average over 150 �g m−3.
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Figure 2.41 Predicted PM10 concentrations by the TVAR(1) model against its measurements

Figure 2.41 shows the scatter plot of the TVAR(1) predicted daily averaged PM10 concen-
tration against its measurement. A 45◦ line is also drawn on the figure for reference. When a
point falls on the 45◦ line, the predicted PM10 concentration is equal to its measurement. It is
noted that a large portion of the points are lying close to the 45◦ line, indicating that the model
results are acceptable. However, there are still a substantial portion of the points far away
from the line. As mentioned above, the predictions generally lag behind the measurements. A
large prediction error is expected when there is a large fluctuation in the daily averaged PM10
concentrations. Therefore, those points lying far above or below the 45◦ line are associated
with the onset and retreat of the PM10 episode.

Figure 2.42 shows the scatter plot of the predicted daily averaged PM10 concentration by
the TVAREX model against its measurements. Compared with the scatter plot of the results
of the TVAR(1) model, it is found that the points become more concentrated around the
45◦ line. It echoes with the observation of the improvement in the time-delay problem as
shown in Figure 2.41. Figure 2.43 shows the scatter plot of the predicted daily averaged PM10
concentrations by the ANN model against its measurements. It is noted that the measured
PM10 concentrations are generally higher than the predicted PM10 concentrations when the
predicted PM10 concentrations are above 100 �g m−3. This is consistent with the observation
made by comparing Figures 2.39 and 2.40.
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Figure 2.42 Predicted PM10 concentrations by the TVAREX model against its measurements

In order to further compare the performance of the TVAREX and ANN models in capturing
the PM10 pollution episodes, the probability of detection (POD) is utilized:

POD ≡ P(x̂n|n−1 ≥ B|yn ≥ B) (2.242)

It is the probability that the model produces correct warning signals when the daily averaged
PM10 concentration is greater than or equal to a given threshold B. This is shown in Table 2.8
for different thresholds from 0 to 150 �g m−3. The POD values of the two models are similar
for thresholds below 100 �g m−3. However, the POD values of the TVAREX model are higher
than those of the ANN model when the threshold is over 100 �g m−3 so the TVAREX model
is more efficient in capturing the PM10 episode days. Furthermore, by observing Figure 2.43,
the points are all below the 45◦ line when the measured concentration is higher than 150 �g
m−3, implying failure of detection by the ANN model. However, the situation is much better
for the TVAREX model as can be seen in Figure 2.42. Note that prediction of the episode days
is a difficult task in general since the PM10 concentrations can build up rapidly by observing
Figures 2.38 – 2.40.

However, the higher values of POD alone do not guarantee better performance of the
TVAREX model. For example, a model that consistently over-predicts the PM10 concentration
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Figure 2.43 Predicted PM10 concentrations by the ANN model against its measurements

Table 2.8 Probabilities of detection by the TVAREX and ANN models

B POD by the TVAREX model POD by the ANN model

0 1.00 1.00
10 0.98 1.00
20 0.95 0.94
30 0.94 0.92
40 0.92 0.89
50 0.87 0.85
60 0.84 0.85
70 0.84 0.79
80 0.83 0.78
90 0.75 0.73

100 0.71 0.67
110 0.65 0.57
120 0.61 0.34
130 0.54 0.14
140 0.48 0.01
150 0.44 0.00
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Table 2.9 Probabilities of false alarms by the TVAREX and ANN models

B PFA by the TVAREX model PFA by the ANN model

0 0.00 0.00
10 0.01 0.01
20 0.06 0.06
30 0.07 0.05
40 0.09 0.08
50 0.11 0.11
60 0.16 0.14
70 0.16 0.13
80 0.17 0.14
90 0.19 0.17

100 0.23 0.16
110 0.25 0.14
120 0.24 0.12
130 0.29 0.32
140 0.37 0.67
150 0.42 0.50

has high values of the POD but it will provide a substantial amount of false alarms. In or-
der to investigate this possibility of Type I error, the probability of false alarm (PFA) is
utilized:

PFA ≡ P(yn < B|x̂n|n−1 ≥ B) (2.243)

It is the probability that the measured daily averaged PM10 concentration is below the threshold
B on a predicted warning day and it is shown in Table 2.9 for different thresholds from 0 to
150 �g m−3. Again, the PFA values of the two models are similar when the threshold is
below 100 �g m−3. However, the PFA values of the ANN model are lower those that of the
TVAREX model when the threshold is between 100 and 125 �g m−3. By also considering
the POD values, it is difficult to judge which model gives better result between 100 and
125 �g m−3. However, when the threshold is over 125 �g m−3, the PFA values of the
TVAREX model are lower than those of the ANN model. Therefore, the TVAREX model
is more efficient in capturing the PM10 pollution episodes without giving too many false
alarms. The problem of the ANN prediction model arises here since the network is trained
in an offline manner, i.e., the parameter vector is kept fixed in the prediction phase. However,
the actual system may be changing from time to time. Therefore, it is suspected that the
input–output relationship of the model may have changed in the testing years and this causes
the underestimation of the daily averaged PM10 concentrations. On the contrary, the TVAREX
model is adaptive, i.e., the model parameters are updated whenever a new measurement of
the PM10 concentration is obtained. The possible changes in the input–output relationship
may be adapted by changing the model parameters through Equation (2.208). Therefore, the
Kalman filter has the advantage that the model is retuned daily.
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2.8.4 Conclusion

In this study, the time-varying models and the ANN model were applied to forecast the daily
averaged PM10 concentrations of Macao between 2003 and 2005. The TVAR models and
the TVAREX model were implemented with the Kalman filter and it was found that the
TVAREX model and the ANN model are superior to the TVAR models based on the judgment
of the error statistics and the agreement in the trends between and the predictions and the
measurements. Since information of the meteorological conditions on the day of prediction
reflects the dispersion conditions and provides a general description of the sources of PM10
pollution affecting Macao, the extra inputs of the TVAREX model and the ANN model enhance
the efficiency of the models and resolve the time delay problem associated with the TVAR
models. It is concluded that the past history of the daily averaged PM10 concentration is not
sufficient to capture its behavior in the future for the case of Macao. Although the TVAREX
model is comparatively better than the TVAR models, it is still preliminary and can be improved
by further investigating the mechanism which governs the accumulation and removal of the
PM10 concentrations [45]. This application demonstrates an important point that an underlying
understanding of the physical problem is the most important factor for modeling. The empirical
TVAR model is attractive in the sense that it does not require much knowledge on the dynamics
of the particulate motion. However, the efficiency of this model is not as satisfactory as the
TVAREX model. Moreover, it must be noted that by using a higher order of the TVAR model,
the fitting error could be reduced but it does not necessarily reduce the prediction error.

In addition to the model class modification, further improvements can be achieved by ad-
justing the process noise and measurement noise parameters which are demonstrated to affect
the performance of the Kalman filter [288]. By comparing the prediction results of the Kalman
filter based TVAREX model with the ANN model, it is found that the error statistics of the
TVAREX model are slightly better than the ANN model. In addition, the TVAREX model
is more efficient in capturing the PM10 pollution episodes. Therefore, it is concluded that
the TVAREX model in conjunction with the Kalman filter is applicable to predict the daily
averaged PM10 concentration and the algorithm has an appealing advantage that the model
parameters can be updated when new measurements are acquired.
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Bayesian Spectral Density
Approach

Keywords: ambient vibration; correlation function; Duffing oscillator; hydraulic jump; infor-
mation entropy; modal identification; optimal sensor placement; spectral density; structural
health monitoring; Wishart distribution

3.1 Modal and Model Updating of Dynamical Systems

The problem of parametric identification for mathematical models using input–output or
output-only dynamic measurements has received much attention over the years. One impor-
tant special case is modal identification, in which the parameters for identification are the
small-amplitude modal frequencies, damping ratios, mode shapes and modal participation
factors of the lower modes of the dynamical system. In other words, the model class in modal
identification is the class of linear modal models. Many time-domain and frequency-domain
methodologies have been formulated for input excitation and output response measurements
[24, 48, 75, 81, 187].

Much attention has also been devoted to modal identification without measuring the input
time history. In particular, a lot of effort has been dedicated to the case of free vibration (or
impulse response) and to the case of ambient vibration. In the former case, often time-domain
methods based on auto-regressive moving average (ARMA) models are employed, using least
squares as the core ingredient in their formulations. However, it was found that the least-
squares method yields biased estimates [76]. A number of methods have been developed to
eliminate this bias, including the instrumental matrix with delayed observations method [76],
the correlation fit method [275], the double least-squares method [114, 202] and the total least-
squares method [92]. A detailed comparison of these methods can be found in Cooper [61].

Another important practical category is the ambient vibration survey (AVS). It has attracted
much interest because it offers a means of obtaining dynamic data in an economical and efficient
manner, without requiring the setup of special dynamic experiments (e.g., actuators) which are
usually costly, time consuming, and often obtrusive. In AVS, the naturally occurring vibration

Bayesian Methods for Structural Dynamics and Civil Engineering Ka-Veng Yuen
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of the structure is measured under wind, traffic, and micro-tremors, etc. Then, a system iden-
tification technique is used to identify the small-amplitude modal frequencies, damping ratios
and mode shapes of the lower modes of the structure. The assumption usually made is that the
input excitation is a broad-band stochastic process adequately modeled as stationary Gaussian
white noise. A number of time-domain methods have been developed to tackle this problem.
One example is the random decrement (RD or ‘Randomdec’) technique [7]. The theoretical
RD functions were shown to be a linear combination of the correlation functions and their
derivatives [266]. Then, the modal parameters can be obtained by fitting the experimental RD
functions with properly selected triggering conditions. Another example is the instrumental
variable method [280]. Several other methods are based on fitting the correlation functions using
least-squares type of approach [20, 21, 139]. Different ARMA model based least-squares type
of methods have also been proposed, e.g., the two-stage least-squares method [60, 85, 86, 207].
Another important type of methods is the prediction error methods [5, 94, 159, 245] that min-
imize the optimally selected one-step-ahead output prediction error. Beck (1978) recognized
the possible usage of the Kalman filter for model identification [15]. Hoshiya and Saito (1984)
investigated the applications of the extended Kalman filter to estimate the dynamic prop-
erties, such as modal frequencies, modal damping coefficients and participation factors, of
linear multi-degree-of-freedom systems [110]. Since then, many methods were proposed as its
evolution for linear and nonlinear dynamical systems [94, 109, 127, 145, 212, 236, 245]. Other
nonlinear system identification methods based on advanced statistical tools, such as wavelets
and higher-order spectra, have also been investigated for the case of known input [141, 299]
and for the case of unknown input [222].

Besides the aforementioned time-domain approaches, many frequency-domain methods
have also been developed and widely used. Examples are the complex curve fitting method
[153], the maximum entropy method [4, 263], the pole/zero assignment technique [271], the si-
multaneous frequency-domain approach [62], the rational fraction polynomial approach [219],
the orthogonal polynomial approach [264], the polyreference frequency-domain approach
[73], the multi-reference simultaneous frequency-domain approach [64] and the best-fit re-
ciprocal vectors method [173].

Results of modal/model identification are usually restricted to the optimal values of the
uncertain parameters. However, there is additional information related to the uncertainty asso-
ciated with the parameter estimates and it is valuable for further processing. For example, in
the case where the identified modal parameters are used to update the theoretical finite-element
model of a structure, the updating procedure involves the minimization of a positive definite
quadratic function of the differences between the theoretical and the experimental modal pa-
rameters. The weighting matrix in this goodness-of-fit function should reflect the uncertainty
in the values of the identified modal parameters so it can be chosen as the inverse of the co-
variance matrix of these parameters. In practice this covariance matrix is usually estimated by
computing the statistics of the optimal estimates of the modal parameters from several sets of
ambient data. However, this estimation is unreliable unless the number of data sets is large.
Recent interest has arisen to determine the uncertainty of the identified parameters using the
Bayesian probabilistic approach. The parametric uncertainty can be quantified in the form of
probability distribution in Bayesian inference [31]. In Beck [16] and Beck and Katafygiotis
[19], the Bayesian probabilistic system identification framework was presented for measured
input–output data. In Yuen and Katafygiotis [291], a method based on the state-space model was
presented to consider explicitly the measurement noise in both input and output measurements.
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In this chapter, the Bayesian spectral density approach, which is a frequency-domain ap-
proach, for modal/model updating using wide-band response data is presented. It utilizes the
statistical properties of the spectral density estimator to obtain not only the optimal values
of model parameters but also their associated uncertainty by means of the updated probabil-
ity distribution of the uncertain parameters. Uncertainty quantification is important for many
applications, such as damage detection and reliability analysis.

In the next section, standard random vibration analysis for stationary response of lin-
ear single-degree-of-freedom systems and multi-degree-of-freedom systems is reviewed. In
Section 3.3, the method is presented first for the case of single-channel output measurements.
The spectral density estimator follows the Chi-square distribution. Then, the method is pre-
sented for multiple-channel output measurements. The spectral density matrix estimator fol-
lows the central complex Wishart distribution. Then, by using the Bayesian probabilistic frame-
work, the updated PDF of the model parameters is obtained based on the above statistics of the
spectral density estimator. In Section 3.4, the approximations used in this method are verified
numerically. The aliasing and leakage effects are also demonstrated. In Section 3.5, an infor-
mation entropy based method is presented for optimal sensor placement for structural systems.
Information entropy is a single measure of the uncertainty of multiple random variables. The
optimal sensor configuration is obtained by minimizing this measure with respect to all pos-
sible ones. Then, the Bayesian spectral density approach is illustrated by applications in three
different areas. In Section 3.6, the nonlinear Duffing oscillator is considered and it turns out that
using one set of response measurement gives an unidentifiable case. However, by using two sets
of response measurements with different excitation levels, the identification problem becomes
globally identifiable. The Bayesian framework is important in this case since it weighs the two
sets of data naturally without applying any adhoc weightings. In Section 3.7, applications to
an existing 22-story building is demonstrated. Acceleration time histories were obtained for
the complete duration of two typhoons with signal no. 8. The modal properties of the building
are updated and the structural behavior is discussed. Finally, in Section 3.8, the method is used
to analyze hydraulic jump measurements to illustrate the application to hydraulics problems.
Three types of hydraulic jumps are investigated, namely the undular jumps, weak jumps and
oscillating jumps. It turns out that the weak jumps and oscillating jumps exhibit oscillatory
behavior and the apparent frequency depends on the dimensionless Froude number.

3.2 Random Vibration Analysis

3.2.1 Single-degree-of-freedom Systems

Consider a linear single-degree-of-freedom (SDOF) system with the equation of motion:

ẍ + 2ζ�ẋ + �2x = f (t) (3.1)

where � and ζ are the natural frequency and damping ratio of the oscillator, respectively. The
unmeasured input f is modeled by zero-mean Gaussian white noise with spectral intensity:

Sf (ω) = Sf0 (3.2)

The flat spectrum indicates equal power of the signal at all frequencies. It is well known that
for given model parameters the response x is a zero-mean Gaussian random process. The
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auto-correlation function of a stochastic process can be defined as follows:

Rx(t, t + τ) ≡ E[x(t)x(t + τ)] (3.3)

In the case of stationary response, the auto-correlation function of the stochastic process x

governed by Equation (3.1) depends only on the time difference τ and it is given by [161, 249]:

Rx(τ) = πSf0

2ζ�3 e−ζ�|τ|
[

cos (�dτ) + ζ√
1 − ζ2

sin (�d |τ|)
]

(3.4)

where �d = �
√

1 − ζ2 is the damped natural frequency of the oscillator. The power spectral
density function is given by the Fourier transform of the auto-correlation function and it is
given by [161, 249]:

Sx(ω) = Sf0

(�2 − ω2)2 + (2ζ�ω)2 (3.5)

It indicates the energy distribution of the stochastic process at different frequencies. For linear
dynamical systems, the auto-correlation function provides sufficient information to construct
the joint PDF of the response at different time instances since they are Gaussian with zero
mean.

3.2.2 Multi-degree-of-freedom Systems

Consider a linear system with Nd degrees of freedom (DOFs) and its equation of motion of
the generalized coordinates x:

Mẍ + Cẋ + Kx = T0F(t) (3.6)

where M, C and K are the mass, damping and stiffness matrix, respectively, T0 ∈ RNd×NF is a
force distributing matrix and F is modeled as zero-mean Gaussian white noise vector process
with the spectral intensity matrix:

SF (ω) = SF0 (3.7)

Using modal analysis, the linear transformation between the generalized coordinates and
the modal coordinates is given by:

x(t) = � · q(t) (3.8)

where q(t) = [q(1)(t), q(2)(t), . . . , q(Nd )(t)]T is the modal coordinate vector, and � =
[φ(1), φ(2), . . . , φ(Nd )] is the modal matrix that satisfies the generalized eigenvalue problem:

M�� = K� (3.9)

The diagonal matrix � contains the eigenvalues. The mth column vector φ(m) in the modal
matrix associated with the mth lowest eigenvalue is called the mode shape of the mth mode of
the dynamical system. Here, they are normalized such that:

φ
(m)
lm

= 1, m = 1, 2, . . . , Nd (3.10)
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where lm is an arbitrarily selected measured DOF provided that it is not a node of the mth mode.
The reason for not adopting mass normalization is that the mass matrix may be unknown in
the identification process.

Then, the uncoupled modal equations of motion are obtained:

q̈(m)(t) + 2ζ(m)�(m)q̇(m)(t) + �(m)2
q(m)(t) = f (m)(t), m = 1, 2, . . . , Nd (3.11)

where the modal forcing vector f(t) = [f (1)(t), f (2)(t), . . . , f (Nd )(t)]T is given by:

f(t) = (M�)−1T0F(t) (3.12)

so it is also a zero-mean Gaussian white noise vector process with the spectral intensity
matrix:

Sf (ω) = Sf0 = (M�)−1T0SF0TT
0 (M�)−T (3.13)

For a given set of model parameters, the response x is a zero-mean Gaussian process and
the (l, l′) element of its power spectral density matrix function Sx is given by [249]:

S(l,l′)
x (ω) =

Nd∑
m=1

Nd∑
m′=1

φ
(m)
l φ

(m′)
l′

S
(m,m′)
f0

[(�(m)2− ω2) + 2iω�(m)ζ(m)][(�(m′)2− ω2) − 2iω�(m′)ζ(m′)]

(3.14)

Furthermore, the correlation matrix function Rx for x has the (l, l′) element [249]:

R(l,l′)
x (τ) = lim

t→∞

Nm∑
m=1

Nm∑
m′=1

φ
(m)
l φ

(m′)
l′

∫ t

0
h(m)(t − u)h(m′)(t + τ − u)du (3.15)

where h(m) is the unit impulse response function of the mth mode:

h(m)(τ) =
⎧⎨
⎩

1
�

(m)
d

e−ζ�(m)τ sin (�(m)
d τ) if τ ≥ 0

0 if τ < 0
(3.16)

The zero value of h(m)(τ) for negative τ is due to the causality of physical systems. The
underlying meaning is that any input should not generate response in the past. Furthermore,
the correlation matrix function Rq for the modal coordinates q has (m, m′) element between
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the mth and m′th mode:

R(m,m′)
q (τ) = lim

t→∞

∫ t

0
h(m)(t − u)h(m′)(t + τ − u)du

= πS
(m,m′)
f0

�
(m)
d �

(m′)
d

exp (−ζ(m)�(m)τ)

[
ζ(m)�(m) + ζ(m′)�(m′)

(ζ(m)�(m) + ζ(m′)�(m′))2 + (�(m′)
d − �

(m)
d )2

cos (�(m)
d τ)

+ �
(m′)
d − �

(m)
d

(ζ(m)�(m) + ζ(m′)�(m′))2 + (�(m′)
d − �

(m)
d )2

sin (�(m)
d τ)

− ζ(m)�(m) + ζ(m′)�(m′)

(ζ(m)�(m) + ζ(m′)�(m′))2 + (�(m′)
d + �

(m)
d )2

cos (�(m)
d τ)

+ �
(m′)
d + �

(m)
d

(ζ(m)�(m) + ζ(m′)�(m′))2 + (�(m′)
d + �

(m)
d )2

sin (�(m)
d τ)

]
, for τ ≥ 0

(3.17)

For negative τ, it can be computed by the following relationship:

R(m,m′)
q (τ) = R(m′,m)

q (−τ) (3.18)

3.3 Bayesian Spectral Density Approach

Use θ to denote the uncertain parameter vector that determines the dynamical model within a
prescribed class of models C. These parameters include:

1. The structural parameters that determine the model matrices M, C, and K.
In the special case of modal updating, assume that only the lowest Nm modes contribute
significantly to the model response and only the modal parameters of these modes are to be
identified. Then, the uncertain structural parameters include the modal frequencies �(m), the
modal damping ratios ζ(m), and the components of the measured DOFs of the mode shapes
φ(m), except the ones which are used for normalization, m = 1, 2, . . . , Nm; thus, there are
a total number of Nm(No + 1) unknown modal parameters in modal identification.

2. The forcing parameters that define the spectral intensity matrix SF0.
In the special case of modal identification, they are the elements of the upper right triangle
(diagonal inclusive) of the Nm × Nm submatrix of Sf0 corresponding to the lowest Nm

modes. Symmetry defines the lower triangle.
3. The elements of the upper right triangle (diagonal inclusive) of �ε, or equivalently Sε0.

Again, symmetry defines the lower triangle of this matrix.

For example, in the case of an SDOF system, θ = [�, ζ, Sf0, Sε0]T is the parameter vector
for identification. Recall that the scaling of each mode shape is chosen such that one component
of a measured DOF is equal to unity. However, this scaling is arbitrary, and the mode shapes
can be identified only up to a constant scaling factor. A different mode shape normalization
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will cause all identified components of the mth mode shape to be scaled by the same constant

αm, and at the same time the values of the elements S
(m,m′)
f0 and S

(m′,m)
f0 will be scaled by α−2

m

if m = m′ and α−1
m if m /= m′.

3.3.1 Formulation for Single-channel Output Measurements

This section considers the response measurement of a single-degree-of-freedom system or a
single-channel measurement of a multi-degree-of-freedom system. Discrete data is sampled
with a time step 
t and yn denotes the measured response at time t = n
t. The measurement
is different from the model response:

yn = x(n
t) + εn, n = 0, 1, . . . , N − 1 (3.19)

Here, the stochastic process x represents the response of a single-degree-of-freedom (SDOF)
system or the response of a particular degree of freedom of a multi-degree-of-freedom (MDOF)
system. The prediction error is modeled as a zero-mean discrete (band-limited) white noise
process ε with variance σ2

ε and spectral intensity:

Sε(ω) = Sε0 = 
t

2π
σ2

ε , ω ∈
[
− π


t
,

π


t

]
(3.20)

and it is assumed to be statistically independent to the stochastic response x.

3.3.1.1 Spectral Density Estimator

Consider the scaled discrete Fourier transform of the stochastic process x:

X(ωk) ≡
√


t

2πN

N−1∑
n=0

x(n
t) exp (−inωk
t) (3.21)

where ωk = k
ω, k = 0, 1, . . . , Nnqy with Nnqy = INT(N
2 ), 
ω = 2π

T
, T = N
t, and INT

takes the integer part of a real number. The Nyquist frequency is defined as:

ωnyq = Nnyq
ω (3.22)

which is half of the sampling frequency and is the upper bound of the frequency in the spectrum.
Then, the discrete estimator of the spectral density function Sx is introduced:

Sx,N (ωk) ≡ |X(ωk)|2 = 
t

2πN

∣∣∣∣∣
N−1∑
n=0

x(n
t) exp (−inωk
t)

∣∣∣∣∣
2

(3.23)

where |.| takes the modulus of a complex variable. In a similar fashion to Equation (3.21), the
discrete Fourier transform for the stochastic process y can be defined:

Y(ωk) =
√


t

2πN

N−1∑
n=0

yn exp (−inωk
t) (3.24)
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Then, the spectral density estimator of y can be computed in analogy to Equation (3.23) as
follows:

Sy,N (ωk) = |Y(ωk)|2 = 
t

2πN

∣∣∣∣∣
N−1∑
n=0

yn exp (−inωk
t)

∣∣∣∣∣
2

(3.25)

3.3.1.2 Statistical Properties of the Spectral Density Estimator

In this section, the statistical properties of the spectral density estimator are investigated in
order to construct the likelihood function of the data. Firstly, it can be shown that the spectral
density estimator is asymptotically unbiased:

lim
T→∞

t→0+

E[Sy,N (ωk)|θ, C] = Sx(ωk) + Sε0 (3.26)

where E[.] denotes the mathematical expectation. However, this estimator is biased for finite
T or finite 
t so Equation (3.26) does not hold without taking the limit. For a given set of
model parameters, taking expectation of Equation (3.25) yields:

E[Sy,N (ωk)|θ, C] = E[Sx,N (ωk)|θ, C] + Sε0

= 
t

2πN

N−1∑
n,n′=0

ei(n′−n)ωk
tRx[(n′ − n)
t] + Sε0
(3.27)

Grouping the terms with the same value of |n′ − n|, the expected value of the spectral density
estimator can be expressed as follows:

E[Sy,N (ωk)|θ, C] = 
t

2πN

[
NRx(0) + 2

N−1∑
n=1

(N − n)Rx(n
t) cos (nωk
t)

]
+ Sε0 (3.28)

This can be calculated using the function ‘fft’ in MATLAB® [171]:

an = [N/2 [N − 1 : −1 : 1]];

Nnyq = fix(N/2);

ESx = dt/pi/N ∗ real(fft(an. ∗ R));

ESx = EStemp(1 : Nnyq);

ESy = ESx + Se0;

% R is an array that includes Rx(0), Rx(
t), . . ., Rx((N − 1)
t).

To investigate the statistical properties of the spectral density estimator, it can be rewritten in
the following form by using Equation (3.25):

Sy,N (ωk) = ξc(ωk)2 + ξs(ωk)2 (3.29)
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where ξc and ξs are the scaled Fourier cosine and sine functions:

ξc(ωk) =
√


t

2πN

N−1∑
n=0

yn cos (nωk
t)

ξs(ωk) =
√


t

2πN

N−1∑
n=0

yn sin (nωk
t)

(3.30)

The discrete stochastic process y, being the measurement of the system governed by Equa-
tions (3.1) or (3.6), and Equation (3.19), is Gaussian with zero mean and so do the random
variables ξc(ωk) and ξs(ωk). Furthermore, for a given value of T , the random variables ξc(ωk)
and ξs(ωk) are independent with equal variance asymptotically as 
t → 0+ [277]. Therefore,
it follows that the spectral density estimator Sy,N (ωk) has the following asymptotic behavior:

lim

t→0+ Sy,N (ωk) = 1

2
[Sx(ωk) + Sε0]χ2 (3.31)

where χ2 is Chi-square distributed with two degrees of freedom or exponentially distributed.
The PDF of this random variable Sk ≡ lim


t→0+Sy,N (ωk) is, therefore, given by:

p(Sk|θ, C) = 1

Sx(ωk) + Sε0
exp

[
− Sk

Sx(ωk) + Sε0

]
(3.32)

For finite N and finite 
t, the random variables ξc(ωk) and ξs(ωk) are correlated and their
variances are not equal. However, it can be shown using simulation that for a particular range
of frequencies the probability distribution of Sy,N (ωk) can be accurately approximated by a
Chi-square distribution in analogy to Equation (3.32):

p(Sy,N (ωk)|θ, C) ≈ 1

E[Sy,N (ωk)|θ, C]
exp

(
− Sy,N (ωk)

E[Sy,N (ωk)|θ, C]

)
(3.33)

where E[Sy,N (ωk)|θ, C] is given by Equation (3.28). Therefore, in the particular range of
frequencies, the probability distribution of Sy,N (ωk) can also be accurately approximated by a
Chi-square distribution with two degrees of freedom. For example, in the case of displacement
such a range of frequencies corresponds to the lower frequency range and this range increases
for higher levels of the prediction error. This will be discussed in Section 3.3.3 and verified in
Section 3.4 by simulation.

Furthermore, simulation shows that the random variables Sy,N (ωk) and Sy,N (ωk′ ) are un-
correlated in the same range of frequencies for the Chi-square distribution, for k /= k′ and
k, k′ ∈ K. According to Yaglom [277], uncorrelated Chi-square random variables are indepen-
dent. Use K to denote the frequency index set that contains the frequency indices for these
approximations to be accurate. Given the observed data D, the spectral set can be computed
by using Equation (3.25):

SK ≡ {Sy,N (k
ω)|k ∈ K} (3.34)
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By the two approximations, the probability density function of SK can be well approximated
by the product of the Chi-square distributions:

p(SK|θ, C) ≈
∏
k∈K

1

E[Sy,N (ωk)|θ, C]
exp

(
− Sy,N (ωk)

E[Sy,N (ωk)|θ, C]

)
(3.35)

where E[Sy,N (ωk)|θ, C] is calculated by Equation (3.28) with Rx(n
t) calculated using
Equation (3.4) for SDOF systems or Equation (3.17) for MDOF systems.

3.3.1.3 Identification with the Bayesian Framework

Using the Bayes’ theorem, the posterior/updated PDF of the model parameter vector θ, given
the spectral set, SK is:

p(θ|SK, C) = κ1p(θ|C)p(SK|θ, C) (3.36)

where κ1 is a normalizing constant, and the likelihood function p(SK|θ, C) is given by
Equation (3.35). The optimal parameters in θ� are obtained by maximizing the updated PDF
or, equivalently, by minimizing the objective function:

J(θ) ≡ − ln[p(θ|C)p(SK|θ, C)]

= − ln p(θ|C) +
∑
k∈K

(
ln E[Sy,N (ωk)|θ, C] + Sy,N (ωk)

E[Sy,N (ωk)|θ, C]

)
(3.37)

This optimization problem can be solved by the MATLAB® function ‘fminsearch’ [171]. It has
been shown numerically for the globally identifiable case with a large number of data points that
the updated PDF can be well approximated by a Gaussian distribution G(θ; θ�,H(θ�)−1) with
mean θ� and covariance matrix H(θ�)−1, where H(θ�) denotes the Hessian of J(θ) calculated
at θ = θ�:

H(l,l′)(θ�) = ∂2J(θ)

∂θl∂θl′

∣∣∣∣
θ=θ�

= −∂2 ln p(θ|C)

∂θl∂θl′

∣∣∣∣
θ=θ�

+
∑
k∈K

[
∂2

∂θl∂θl′

(
ln E[Sy,N (ωk)|θ, C] + Sy,N (ωk)

E[Sy,N (ωk)|θ, C]

)]

θ=θ�

(3.38)

3.3.1.4 Identification with Multiple Sets of Measurements

If several sets of independent time histories D(1),D(2), . . . ,D(Ns) are available, the
identification process can be proceeded by calculating the corresponding spectral sets
S(1)
K ,S(2)

K , . . . ,S(Ns)
K and then the updated PDF is given by:

p(θ|S(1)
K ,S(2)

K , . . . ,S(Ns)
K , C) = κ2p(θ|C)

Ns∏
s=1

p
(
S(s)
K |θ, C

)
(3.39)
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where each of the likelihood functions p(S(s)
K |θ, C) can be obtained by Equation (3.35). Again,

the updated PDF can be approximated with a Gaussian distribution centered at the optimal pa-
rameter vector θ� obtained by maximizing the right hand side of Equation (3.39). Nevertheless,
it is equivalent to minimize the objective function:

J(θ) ≡ − ln p(θ|C) −
Ns∑
s=1

ln p
(
S(s)
K |θ, C

)

= − ln p(θ|C) + Ns

∑
k∈K

ln E[Sy,N (ωk|θ, C)] +
∑
k∈K

Ns∑
s=1

Sy,N (ωk)

E[Sy,N (ωk)|θ, C]

= − ln p(θ|C) + Ns

∑
k∈K

ln E[Sy,N (ωk|θ, C)] + Ns

∑
k∈K

Sav
y,N (ωk)

E[Sy,N (ωk)|θ, C]

(3.40)

where:

Sav
y,N (ωk) = 1

N

Ns∑
s=1

S
(s)
y,N (ωk) (3.41)

is the averaged spectral value.
An alternative approach, which yields equivalent results but is computationally more effi-

cient, is to calculate the average of the above Ns spectral density estimates. The probability
distribution of the averaged spectral density estimator is:

p(Sav
y,N (ωk)|θ, C) =

NNs
s

[
Sav

y,N (ωk)
]Ns−1

(Ns − 1)!{E[Sy,N (ωk)|θ, C]}Ns
exp

(
− NsS

av
y,N (ωk)

E[Sy,N (ωk)|θ, C]

)
(3.42)

since the random variable 2NsS
av
y,N (ωk)/E[Sy,N (ωk)] follows the standard Chi-square distri-

bution with 2Ns DOFs. In this case, the objective function can be defined as the negative
logarithm of the updated PDF without taking the constant terms that do not depend on the
uncertain parameters:

J(θ) = − ln p(θ|C) + Ns

∑
k∈K

ln E[Sy,N (ωk|θ, C)] + Ns

∑
k∈K

Sav
y,N (ωk)

E[Sy,N (ωk)|θ, C]
(3.43)

which is identical to Equation (3.40). Therefore, the optimal parameters and associated uncer-
tainty obtained by these two approaches are identical.

Although the above formulation was presented for displacement time history, it can be eas-
ily modified for velocity or acceleration measurements. In this case the right hand side of
Equations (3.4) or (3.17) can be modified with the corresponding expressions for velocity or
acceleration. Of course, the case of relative acceleration with white noise excitation is not real-
istic since the response variance is infinity. However, the absolute acceleration measurements
can be considered for ground excitation. Another choice is to utilize a band-limited excitation
model.
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3.3.1.5 Importance of the Proper Distribution for the Spectral Density Estimator

In a practical situation with multiple sets of data, one of the following two approaches is usually
followed: (1) the averaged spectrum is calculated and then curve fitting is proceeded to obtain
the optimal parameters or (2) the optimal estimates θ�(1)

, θ�(2)
, . . . , θ�(Ns) are obtained by

curve fitting for each of the Ns sets of data, and then the sample average and sample variance
of the parameters are computed as the overall optimal parameters and the associated variance
of the model parameters. In the first case, only the optimal estimates are obtained while in
the second case the associated uncertainty can also be estimated. It is worth noting however
that traditional least-squares curve fitting of the spectrum SK is not appropriate. This follows
directly from Equation (3.35) that the spectral density estimator is non-Gaussian. Figure 3.1
shows the PDFs of the random variables which are the average of n exponentially distributed
random variables with mean equal to unity, for n = 1, 5, 20. The exponential distribution
(n = 1) is clearly different from the Gaussian distribution. However, the distribution of the
averaged random variables (n = 5 or 20) are bell-shaped and approach Gaussian for large n.
This explains why least-squares fitting requires an averaged spectrum to proceed.
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Figure 3.1 Distribution of an exponential random variable and its averages

3.3.2 Formulation for Multiple-channel Output Measurements

Assume that discrete response data are available for No(≤ Nd) instrumented DOFs and use 
t

to denote the sampling time step. Because of measurement noise and modeling error, referred to
hereafter jointly as prediction error, the measured response yn ∈ RNo at time t = n
t differs
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from the model response Lox(n
t) corresponding to the measured DOFs. Here, Lo is the
No × Nd observation matrix, comprised of zeros and ones. The prediction error is represented
by a discrete Gaussian white noise vector process ε:

yn = Lox(n
t) + εn (3.44)

where εn ∈ RNo . The discrete process ε has zero mean and it satisfies:

E[εnε
T
n′ ] = �εδnn′ (3.45)

where E[.] denotes the mathematical expectation, δnn′ denotes the Kronecker delta, and �ε

denotes the No × No covariance matrix of the prediction-error process ε.

3.3.2.1 Spectral Density Matrix Estimator

Consider a discrete stochastic vector process y and a finite number of discrete data points
D = {yn, n = 1, 2, . . . , N}. Based on D a discrete estimator of the spectral density matrix of
the stochastic process y is introduced:

Sy,N (ωk) = Y(ωk)Y(ωk)H (3.46)

where H denotes the adjoint or conjugate transpose of a complex vector/matrix. The vector
Y(ωk) ∈ CNo denotes the scaled discrete Fourier transform of the vector process y at frequency
ωk:

Y(ωk) =
√


t

2πN

N−1∑
n=0

yn exp (−inωk
t) (3.47)

where ωk = k
ω, k = 0, 1, . . . , Nnqy with Nnqy = INT(N/2), 
ω = 2π/T, and T = N
t.
Since x and ε are assumed statistically independent, q and ε are also independent. By using

Equations (3.8) and (3.44), taking expectation of Equation (3.46), yields:

E[Sy,N (ωk)|θ, C] = LoE[Sx,N (ωk)|θ, C]LT
o + E[Sε,N (ωk)|θ, C]

= (Lo�)E[Sq,N (ωk)|θ, C](Lo�)T + E[Sε,N (ωk)|θ, C]
(3.48)

where C is a prescribed class of models for the dynamical system. The matrices Sx,N (ωk),
Sq,N (ωk), and Sε,N (ωk) are defined in a similar manner to Equations (3.46) and (3.47) for the
vector processes x, q and ε, respectively. It follows easily from Equations (3.45)–(3.47) that
E[Sε,N (ωk)|θ, C] can be expressed in terms of the covariance matrix �ε of the discrete white
noise:

E[Sε,N (ωk)|θ, C] = 
t

2π
�ε ≡ Sε0 (3.49)

The term E[Sq,N (ωk)|θ, C] in Equation (3.48) can be readily obtained by noting that Sq,N (ωk)
has the elements:

S
(m,m′)
q,N (ωk) = 
t

2πN

N−1∑
n,n′=0

q(m)
n q

(m′)
n′ ei(n′−n)ωk
t (3.50)
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Grouping together the terms with the same value of n′ − n, the following expression can be
obtained by taking expectation of Equation (3.50):

E[S(m,m′)
q,N (ωk)|θ, C] = 
t

2πN

[
NR(m,m′)

q (0)

+
N−1∑
n=1

(N − n)[R(m,m′)
q (n
t)einωk
t + R(m′,m)

q (n
t)e−inωk
t]

]

(3.51)

where the correlation function of the modal coordinates is given by Equation (3.17). Again,

this estimator E[S(m,m′)
q,N (ωk)|θ, C] can be computed efficiently using the function ‘fft’ in

MATLAB® [171]:

an = [N/2 [N − 1 : −1 : 1]];

Nnyq = fix(N/2);

for m1=1:Nm

ESqtemp = dt/pi/N ∗ real(fft(an. ∗ Rq(m1, m1, :)));

ESq(m1, m1, :) = ESqtemp(1 : Nnyq);

% Rq is a 3-array of the correlation function Rq where the first two indices

% denote the modes and the last denotes the time lag

for m2 = m1 + 1 : Nm

ESqtemp = dt/2/pi/N ∗ conj(fft(an. ∗ Rq(m1, m2, :))) + ...

fft(an. ∗ Rq(m2, m1, :)))

ESq(m1, m2, :) = ESqtemp(1 : Nnyq);

ESq(m2, m1, :) = conj(ESq(m1, m2, :));

end

end

3.3.2.2 Statistical Properties of the Spectral Density Matrix Estimator

Next, the statistical properties of the spectral density matrix estimator Sy,N (ωk) are investigated.
Denote by YR(ωk) and YI (ωk) the real and imaginary part, respectively, of Y(ωk) so:

Y(ωk) = YR(ωk) + iYI (ωk) (3.52)

Since y is a zero-mean Gaussian vector process, both YR(ωk) and YI (ωk), k = 0, 1, . . . , Nnqy,
are zero-mean Gaussian random vectors. Furthermore, in the limit when 
t → 0+, and for
a non-zero and non-Nyquist frequency ωk, it can be shown that the covariance matrix of the



Bayesian Spectral Density Approach 113

vector [YR(ωk)T , YI (ωk)T ]T has the form [295]:

G(ωk) =
[

G1(ωk) −G2(ωk)

G2(ωk) G1(ωk)

]
(3.53)

This indicates that YR(ωk) and YI (ωk) have an equal covariance matrix G1(ωk) but the cross-
covariance is anti-symmetric:

G2(ωk)T = −G2(ωk) (3.54)

or element-wise E[YI,l(ωk)YR,l′ (ωk)] = −E[YR,l(ωk)YI,l′ (ωk)]. The latter property implies
also that the diagonal elements of G2 are zero, i.e., E[YR,l(ωk)YI,l(ωk)] = 0, for every l and
ωk. By Equation (3.53) the complex vector Y(ωk) is said to follow the complex multivariate
normal distribution [146] as T → ∞ and 
t → 0+ except the zero or Nyquist frequency.

Assume that Ns sets of independent and identically distributed time histories are available:
D(1),D(2), . . . ,D(Ns). As T → ∞ and 
t → 0+, the corresponding discrete Fourier trans-
forms Y(s)(ωk), s = 1, 2, . . . , Ns, are independent and follow an identical complex No-variate
normal distribution with zero mean. Then, according to Krishnaiah [146], the averaged spectral
density matrix estimator:

Sav
y,N (ωk) = 1

Ns

Ns∑
s=1

S(s)
y,N (ωk) = 1

Ns

Ns∑
s=1

Y(s)(ωk)Y(s)(ωk)� (3.55)

follows the central complex Wishart distribution [93] of dimension No with Ns degrees of
freedom and mean E[Sav

y,N (ωk)|θ, C] = E[Sy,N (ωk)|θ, C] = 2[G1(ωk) + iG2(ωk)]. The PDF
of this distribution is given by:

p(Sav
y,N (ωk)|θ, C) =π− No(No−1)

2 N
No(Ns−No)
s |Sav

y,N (ωk)|Ns−No

(
∏No

s=1 (Ns − s)!)|E[Sy,N (ωk)|θ, C]|Ns

× exp (−Ns tr{E[Sy,N (ωk)|θ, C]−1Sav
y,N (ωk)})

(3.56)

where |A| and tr{A} denote the determinant and trace of the matrix A, respectively. Note that
this PDF exists if and only if Ns ≥ No.

Also, in the special case of a single channel of measurements (No = 1), the distribution in
Equation (3.56) reduces to:

p(Sav
y,N (ωk)|θ, C) =

NNs
s

[
Sav

y,N (ωk)
]Ns−1

(Ns − 1)!{E[Sy,N (ωk)|θ, C]}Ns
exp

(
− NsS

av
y,N (ωk)

E[Sy,N (ωk)|θ, C]

)
(3.57)

which is identical to Equation (3.42). Note that the real random variable
2NsS

av
y,N (ωk)/E[Sy,N (ωk)|θ, C] follows the standard Chi-square distribution with 2Ns

degrees of freedom.
It can be shown that when T → ∞ and 
t → 0+ the vectors [YR(ωk)T , YI (ωk)T ]T and

[YR(ωk′ )T , YI (ωk′ )T ]T are independent if k /= k′ [295] so the complex vectors Y(ωk) and Y(ωk′ )
are independent. As a result the random matrices Sav

y,N (ωk) and Sav
y,N (ωk′ ) are independently
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complex Wishart distributed for k /= k′:

p[Sav
y,N (ωk), Sav

y,N (ωk′ )] = p[Sav
y,N (ωk)]p[Sav

y,N (ωk′ )] (3.58)

Although Equations (3.56) and (3.58) are exact only as 
t → 0+, it can be verified by sim-
ulation that they are good approximations in a particular frequency range. It will be shown
later using simulation that such approximations are indeed accurate if an appropriately chosen
bandwidth is considered. The reasons for the violation of these approximations are aliasing
and leakage. Therefore, the range of frequency for accurate approximations is the region with
large spectral values since the aliasing and leakage effects have relatively minor contribution
in such a frequency range. As a result, in the case of displacement measurement such a range
of frequencies corresponds to the lower frequency range. This range increases for higher levels
of prediction error. This will be shown in the numerical verification in Section 3.4.

3.3.2.3 Identification Based on Spectral Density Estimates

Based on the above discussion regarding the statistical properties of the averaged spectral
estimator, the Bayesian spectral density approach for updating the uncertain parameter vector
θ is given as follows. With Ns (≥ No) independent sets of observed dataD(s), s = 1, 2, . . . , Ns,
the corresponding observed spectral density matrix estimators S(s)

y,N (ωk), s = 1, 2, . . . , Ns,
k ∈ K, can be obtained using Equations (3.46) and (3.47). Then, the averaged spectral density
matrix estimators Sav

y,N (ωk) is readily obtained by Equation (3.55) to form the averaged spectral
set:

Sav
K ≡ {Sav

y,N (k
ω)|k ∈ K} (3.59)

Here the frequency index set K represents a range over which Equations (3.56) and (3.58)
give a satisfactory approximation and this will be further discussed in Section 3.3.3. Using the
Bayes’ theorem, the updated PDF of the model parameter vector θ, given the averaged spectral
set Sav

K , is given by:

p(θ|Sav
K , C) = κ3 p(θ|C)p(Sav

K |θ, C) (3.60)

where κ3 is a normalizing constant. The prior distribution p(θ|C) expresses the relative plau-
sibility of different values of θ based on the prior information and engineering judgement.
The likelihood function p(Sav

K |θ, C) expresses the contribution of the measured data. Based on
Equations (3.56) and (3.58), it can be calculated as follows:

p(Sav
K |θ, C) ≈ κ4

∏
k∈K

1

|E[Sy,N (ωk)|θ, C]|Ns
exp (−Ns tr{E[Sy,N (ωk)|θ, C]−1Sav

y,N (ωk)})
(3.61)

where κ4 = π− No(No−1)Nω
2 (

∏No

s=1 (Ns − s)!)−NωN
No(Ns−No)Nω
s

∏
k∈K|Sav

y,N (ωk)|Ns−No ; Nω is the
number of frequency points to be considered and is equal to the number of the distinct elements
in the set K. For a given set of data the constant κ4 does not depend on the model parameters
so it does not affect the optimal parameters and their associate uncertainty. Finally, the most
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probable parameter vector θ� is obtained by minimizing the objective function:

J(θ) = − ln p(θ|C) + Ns

∑
k∈K

[
ln

∣∣∣∣E[Sy,N (ωk)|θ, C]

∣∣∣∣ + tr{E[Sy,N (ωk)|θ, C]−1Sav
y,N (ωk)}

]

(3.62)
In the case where a non-informative prior is used, the first term can be simply neglected.
Furthermore, the updated PDF of the parameter vector θ can be well approximated by a
Gaussian distribution G(θ; θ�,H(θ�)−1) with mean θ� and covariance matrix H(θ�)−1, where
H(θ�) denotes the Hessian matrix of the objective function J calculated at θ = θ�:

H(l,l′)(θ�) = ∂2J(θ)

∂θl∂θl′

∣∣∣∣
θ=θ�

= −∂2 ln p(θ|C)

∂θl∂θl′

∣∣∣∣
θ=θ�

+ Ns

∑
k∈K

[
∂2

∂θl∂θl′

(
ln

∣∣∣∣E[Sy,N (ωk)|θ, C]

∣∣∣∣ + tr{(E[Sy,N (ωk)|θ, C])−1Sav
y,N (ωk)}

)]

θ=θ�

(3.63)

Standard optimization algorithms (e.g., the function ‘fminsearch’ in MATLAB® [171]) can
be employed to minimize the objective function J in Equation (3.62) and obtain the optimal
parameters and then a central difference can be used to calculate the Hessian matrix H(θ�)
whose inverse is the covariance matrix (Appendix A). An alternative efficient and robust
approach, yielding simultaneously both the mean and the covariance matrix of the posterior
distribution, is based on adaptive importance sampling [133] or simulated annealing.

3.3.3 Selection of the Frequency Index Set

The two approximations used in the Bayesian spectral density approach are accurate in a
particular frequency range. It is recommended to select the frequency index set to include only
the range around the peaks in the spectrum even though the Chi-square/Wishart distributions
and independence approximations are accurate over a wider range. This selection enhances
the computational efficiency without sacrificing substantially the information for the frequency
structure of the dynamical system (though it induces loss of information for the prediction-
error variance). Another advantage is that the results by this choice will rely less on the
‘whiteness assumption’ since it requires a flat spectral density function for each mode only
around the corresponding peak instead of over the whole frequency range. Moreover, the
aliasing and leakage effects generally have less influence on this range since their spectral
values are large. Therefore, for practical purpose, the theoretical power spectral density function
can be used instead of its estimator in Equation (3.28) or Equation (3.48) with Equation (3.51)
since expressions of the correlation functions may be tedious to derive. Such an approximation
may affect slightly the damping ratios and the spectral intensity of the excitation but it has a
very small effect on the estimation of the modal frequencies of the system.

Another important advantage of this cutoff frequency range is as follows. In most existing
probabilistic methods, the uncertainty of the model parameters will tend to zero if the sampling
time interval tends to zero with a fixed observed duration (even if it is very short) as long as it
is globally identifiable. This is the consequence of the discrete white noise assumption. Note
that this phenomenon occurs even for filtered white noise, such as moving average or auto-
regressive output of white noise. However, for the Bayesian spectral density method with this
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proposed cutoff frequency range, the sampling time interval does not affect the frequency index
set so the same number of frequencies is considered regardless of the sampling time interval
(if it is sufficiently small). Therefore, the uncertainty of the model parameters provided by the
Bayesian spectral density method will stabilize as the sampling time step tends to zero. This
feature of the methodology is appealing for practical purposes.

3.3.4 Nonlinear Systems

The modal decomposition described in Section 3.2.2 is inapplicable for nonlinear systems.
Furthermore, analytic solution of the correlation function or the spectral density function of
the response of nonlinear systems, especially those with two or more degrees of freedom, is
in general unavailable. However, the Chi-square/Wishart and independence approximations
of the spectrum are still valid in a particular frequency range [295]. In this case, for a given
model parameter vector θ, realizations of the response time histories are simulated and then
their spectral density estimators can be computed in a similar manner to that described in
Equations (3.46) and (3.47). Finally, the expected values of the spectral density estimators
can be approximated by the sample average of these spectral density estimators. It is not
recommended to estimate the correlation functions and then use Equations (3.28) or (3.51)
to compute the mean spectral density estimator because the correlation function estimated
by simulation has a large uncertainty and bias for the components with a large time lag.
Therefore, if more efficient tools are available for the computation of the mean spectrum of
nonlinear systems, the Bayesian spectral density approach is ready for the identification of
their parameters. In Section 3.6, an application for updating the nonlinear Duffing oscillator is
presented. It will be demonstrated that uncertainty quantification is very important in this case
as the problem becomes ill-posed for one set of measurements.

3.4 Numerical Verifications

In this section, a single-degree-of-freedom linear system is considered to verify the approxi-
mations used in the method. The actual parameters are: �̃ = 4 rad/s, ζ̃ = 1%, S̃f0 = 1 cm2

s−3 and response time histories are generated using the MATLAB® function ‘lsim’ [171] for
T = 1000 s with the time step 
t = 0.005 s. However, the measurements are assumed to be
observed with a sampling time interval 
t = 0.05 s so N = 20000. This is done on purpose to
simulate the reality that there is inevitably a frequency content in the signal higher than the
Nyquist frequency. Furthermore, measurements are assumed to be noise-free in this example,
i.e., S̃ε0 = 0.

Figure 3.2 refers to displacement measurements and shows a comparison among: (i) the
theoretical spectral density function Sy corresponding to the continuous process y = x (solid
line). According to Equation (3.5), this is given by:

Sy(ω) = S̃f0

(�̃2 − ω2)2 + (2ζ̃�̃ω)2
(3.64)

and (ii) E[Sy,N (ωk)|θ̃, C], the expected value of the discrete spectral density estimator Sy,N (ωk),
according to Equation (3.28) (dashed line) and (iii) E[Sy,N (ωk)|θ̃, C] calculated as the average
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Figure 3.2 Sy(ω), E[Sy,N (ωk)|θ̃, C] and E[Sy,N (ωk)|θ̃, C] from simulation

of Sy,N (ωk) using four thousand simulation runs (dotted line). It is observed that the latter two
agree well so the expression in Equation (3.28) yields an unbiased estimation of the spectrum
estimated from discrete measurements.

Figure 3.3 shows the difference between the first two curves in Figure 3.2 relative to the
first one, i.e., E[Sy,N (ωk)|θ̃, C]/Sy(ωk) − 1. The relative error is large for higher frequencies.
One of the reasons for the observed differences, especially in the far right tail, is aliasing. The
aliasing effect comes from the fact that the original signal inevitably contains some contents
in the frequencies higher than the Nyquist frequency. These contents will appear in the band
of the Fourier amplitude spectrum, i.e., [0, ωnyq] and this phenomenon of overestimating the
spectral values in the Fourier amplitude spectrum is referred to as aliasing.

Another reason for the difference from the theoretical spectral density is leakage. The effect
of leakage comes from the fact that the measurement does not contain an exact integer-multiple
of the periods of the Fourier components. Instead of showing a single spike in the spectrum,
the spectral value is being leaked out to the nearby frequencies. Therefore, it can be observed
primarily at frequencies around the natural frequency, causing the expected values of the
spectral density estimator to be smaller than the theoretical spectral density.

3.4.1 Aliasing and Leakage

The aliasing and leakage effects come from the manipulation of finite number of data points
measured at a finite sampling rate. First, the aliasing effect is demonstrated. Consider a sinu-
soidal signal with frequency � = 1.0 Hz: x(t) = sin (2πt), which is shown by the solid line
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Figure 3.3 Percentage difference between Sy(ωk) and E[Sy,N (ωk)|θ̃, C]

in Figure 3.4. The measurements are taken at a sampling rate of 4/3 Hz and these samples are
shown by the circles. In this case, the frequency of the original signal is higher than the Nyquist
frequency, which is 2/3 Hz. By observing these data points only, misleading information will
be obtained and it may be interpreted as a sinusoidal curve with frequency 1/3 Hz, which is
shown by the dashed line. Moreover, the discrete Fourier transform of the measured signal
shows a spike at � =1/3 Hz. The implication is that if the signal has contents at frequencies
higher than the Nyquist frequency (half sampling frequency), these contents will appear in
the frequencies lower than the Nyquist frequency. Therefore, the Fourier amplitudes of the
low frequencies will be higher than they should be. This phenomenon occurs for general non-
sinusoidal signals as there are inevitably signal contents in the frequency range higher than the
Nyquist frequency. For large N, the aliasing effect can be quantified by [295]:

lim
N→∞ E[Sy,N (ωk)|θ, C] = Sy(ωk) +

∞∑
k′=1

[
Sy

(
2πk′


t
+ ωk

)
+ Sy

(
2πk′ − ωk


t

)]
(3.65)

Figure 3.5 demonstrates the leakage effect. Consider the same signal x(t) = sin (2πt). Mea-
surements are taken for T = 20 s with 
t = 0.1 s. Figure 3.5(a) shows its Fourier amplitude
spectrum Sy,N (ω) and a perfect spike at ω = 2π rad/s = 1.0 Hz is observed. Note that exactly
20 cycles are measured in this case. However, if the measurement is taken up to T = 19.9 s
only, its peak in the Fourier spectrum will leak out and this is shown in Figure 3.5(b). The
amplitude value at ω = 2π rad/s is also smaller than that in the case with T = 20 s. An even
worse case occurs when T = 19.5 s, in which 19.5 cycles were measured. The amplitude in
the Fourier spectrum is even lower and the leakage range is more spread.
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Figure 3.4 Demonstration of the aliasing effect
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120 Bayesian Methods for Structural Dynamics and Civil Engineering

0 0.01 0.02 0.03 0.04
0

0.5

1
C

D
F

0 50 100 150
0

0.5

1

0 2 4 6
0

0.5

1

Sy,N(ωk)/(x 10−3) Sy,N(ωk)/(x 10−5)

C
D

F

ωk = 8.0 rad/s (2Ω)

ωk = 1.0 rad/s (Ω/4)

ωk = 4.0 rad/s (10Ω)

ωk = 4.0 rad/s (Ω)

0 0.5 1 1.5
0

0.5

1

Figure 3.6 CDFs of Sy,N (ωk) at different frequencies by simulation and the Chi-square approximation
(displacement)

Figure 3.6 refers to displacement measurements and shows the comparison between the
cumulative distribution function (CDF) of Sy,N (ωk) obtained using: (i) simulation by the same
4000 simulation runs used for Figure 3.2 (solid line) and (ii) the approximation of a Chi-
square distribution with two degrees of freedom according to Equation (3.33) (dashed line).
Four different values of ωk are considered and they belong to different ranges of the spectrum.
The Chi-square distribution provides satisfactory approximation in the lower frequency range
but the accuracy deteriorates in the higher frequencies (e.g., ωk > 5�̃). Figure 3.7 is similar
to Figure 3.6 but it considers the absolute acceleration response subjected to ground motion:

ẍabs = ẍ + ẍg = − c

m
ẋ − k

m
x (3.66)

where ẍ and ẍg are the relative acceleration of the mass and the ground acceleration, respec-
tively. In this case the assumption of a Chi-square distribution with two degrees-of-freedom
is a good approximation in the higher frequency range while this accuracy deteriorates as one
moves to lower frequencies (e.g., ωk < 0.25�̃). It is worth noting that for the case of nonzero
prediction error (i.e., S̃ε0 > 0), the assumption of a Chi-square distribution provides satisfac-
tory approximation over a larger range of frequencies than the noise-free case because the
measurement noise pushes up the spectral density in an expected sense and this dilutes the
effects of aliasing.

Figure 3.8 refers to displacement measurements and shows the correlation coefficients be-
tween Sy,N (ωk) and Sy,N (ωk′ ), k′ = 0, 1, . . . , Nnqy, for four selected values of ωk. The spectral
density estimators in the lower frequency range (e.g., ωk < 2�̃) can be considered uncorrelated,
thus validating the use of Equation (3.58) with 0 < ωk, ωk′ ≤ 2�̃. However, when one moves to
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Figure 3.9 Correlation coefficients between Sy,N (ωk) and Sy,N (ωk′ ) (acceleration)

the high frequencies, the correlation coefficients become large. Figure 3.9 is similar to
Figure 3.8 but it considers the absolute acceleration measurements. In this case the spec-
tral density estimators can be considered uncorrelated for the whole frequency range. Again,
the presence of a prediction error will in general expand the range of frequencies over which
the spectral estimates can be considered to be uncorrelated and, therefore, independent. The
aliasing and leakage effects are the reasons for the dependence between the spectral values at
different frequencies and they have more effect on the frequency range with smaller spectral
values. Therefore, the region around the peaks in the spectrum is utilized for identification.

It will be shown later in this example that utilizing the whole range of frequencies of
displacement measurement in Equation (3.61) (i.e., K = {1, 2, . . . , Nnqy − 1}) leads to bias
and unreasonably small variances, especially for the damping ratio and spectral intensity.
In order to obtain reasonable results, an appropriate frequency range is necessary and the
recommendation in Section 3.3.3 can be utilized.

3.4.2 Identification with the Spectral Density Approach

To let the identification results solely depend on the contribution from the data, a non-
informative prior is taken, i.e., p(θ|C) is constant and it is absorbed into the normalizing
constant. Table 3.1 refers to the identification results using a single set of displacement measure-
ments D. It shows the optimal values θ� = [��, ζ�, S�

f0]T , the calculated standard deviations
σ�, σζ , and σSf0 , the coefficient of variation (COV) for each parameter and the normalized dis-
tance for each parameter. This distance represents the absolute value of the difference between
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Table 3.1 Identification results for one set of data and frequency range (0, 1.2 �̃]

Parameter Actual θ̃ Optimal θ� S.D. σ COV |θ̃−θ� |
σ

� 4.0000 4.0046 0.0063 0.002 0.73
ζ 0.0100 0.0091 0.0015 0.155 0.59
Sf0 1.0000 1.0214 0.0393 0.039 0.54

the optimal and target value, normalized by the corresponding posterior standard deviation.
Thus, it expresses how many standard deviations the identified value is away from its target
value. Here, updating of the modal parameters is performed using only spectral estimates
up to the frequency 1.2�̃ (i.e., K = {1, 2, . . . , 764}) in Equation (3.61) to ensure that the
spectral estimates at different frequencies follow approximately the uncorrelated Chi-square
distributions. The marginal updated PDF of the natural frequency � and the damping ratio ζ

can be obtained by integrating out the spectral intensity. Its contours can be found by using
the method in Appendix B and they are shown in Figure 3.10. The estimates of these two
parameters can be considered independent. Similarly, Figure 3.11 shows the contours of the
marginal updated PDF of the damping ratio ζ and the spectral intensity of the excitation Sf0. In
contrast to the previous case, the estimates of these two parameters are correlated so the elliptical
contours are rotated. Figure 3.12 shows the conditional PDFs of the natural frequency � and the
damping ratio ζ with the spectral intensity fixed at its optimal value. The conditional PDFs by
the Bayesian approach and the Gaussian approximation are plotted with solid lines and dashed
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lines, respectively, but the two sets of curves are on top on each other, indicating that the
Gaussian approximation is accurate and can be used to represent the updated PDF, e.g., for
statistical moments computation.

Table 3.2(a) shows the statistics of the optimal parameters obtained from five hundred
independent displacement time histories generated using the same actual parameters in θ̃.
Again, only the lower frequency range (0, 1.2�̃] was used in calculating the updated PDFs
of the parameters. The optimal parameter vectors θ�(s), s = 1, 2, . . . , 500, were calculated
for each time history. The sample average and standard deviation of the optimal parameters
calculated from the set {θ�(s), s = 1, 2, . . . , 500} are shown in the third and fourth columns,
respectively. The fifth column shows the square root of the sample average of the five hundred
different variances obtained by the Bayesian spectral density approach considering each sample
response time history separately. It can be seen that the fourth and fifth columns are similar.
This implies that the uncertainty of the modal parameters quantified from a single sample
is representative for the uncertainty of the optimal parameters obtained from a number of
independent data sets with equal length. Also, the uncertainty of the sample average can be
quantified by the standard deviation, which is given by the standard deviation in the fourth
column divided by

√
500.

Table 3.2(b) is the same as Table 3.2(a) except that the subset frequency range [0.8�̃, 1.2�̃]
was used in computing the updated PDFs of the parameters. The identification results are
again reasonable. As in Table 3.2(a), the values of the fourth and fifth column are similar. It is
worth noting that the calculated standard deviation of the parameter Sf0 is much larger than
the corresponding value in Table 3.1. Such increase of the uncertainty is expected in this case
since only part of the available information is utilized. Furthermore, the loss of information
contributes mainly for the identification of the excitation level but not the time-frequency
structure of the signal. On the other hand, the uncertainty of the modal frequency and damping
ratio remain almost unchanged, implying that most of the information regarding these two
parameters is contained within the selected frequency range.

Table 3.2 Statistics of identification results using 500 sets of data and different frequency ranges

(a) (0, 1.2�̃] Parameter Actual θ̃ Average of θ� S.D. of θ�

√
σ2

� 4.0000 4.0004 0.0063 0.0067
ζ 0.0100 0.0102 0.0018 0.0017
Sf0 1.0000 0.9967 0.0392 0.0385

(b) [0.8�̃, 1.2�̃] Parameter Actual θ̃ Average of θ� S.D. of θ�

√
σ2

� 4.0000 4.0003 0.0060 0.0068
ζ 0.0100 0.0103 0.0018 0.0018
Sf0 1.0000 0.9986 0.0745 0.0699

(c) Entire frequency range Parameter Actual θ̃ Average of θ� S.D. of θ�

√
σ2

� 4.0000 4.0031 0.0068 0.0062
ζ 0.0100 0.0221 0.0117 0.0008
Sf0 1.0000 0.9119 0.0782 0.0156
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Table 3.2(c) shows the results by including all spectral points (except the zero and Nyquist
frequency) in the updating process, i.e., K = {1, 2, . . . , Nnqy − 1} in Equation (3.61). It is
noted that in this case the identification results do not seem reasonable. In particular, the values
in the fourth column are significantly larger than the ones in the fifth column, especially for
the damping ratio and spectral intensity. This implies that the uncertainty of the parameters
calculated from each time history underestimates the uncertainty of the parameter estimation
and this can be explained as follows. When the entire frequency range is used in computing
the likelihood function in Equation (3.61), it assumes that the information extracted from
each spectral point Sy,N (ωk) is new information and independent from that extracted from all
other points. This is because Equation (3.61) assumes independence of the spectral estimates
corresponding to all frequency points. However, as discussed earlier, this approximation of
independence deteriorates in the higher frequency range. The effective information that can be
extracted from the data should be much less, and the corresponding uncertainty much larger,
than that implied by Equation (3.61) when the entire frequency range is utilized.

3.4.3 Identification with Small Amount of Data

Another case is investigated with a very short duration of measurement, namely T = 60 s,
so it contains roughly 38 fundamental periods of the oscillator. The Bayesian spectral den-
sity approach is used for its identification with the frequency index set K = {1, 2, . . . , 45}.
Figure 3.13 shows the conditional updated PDFs of � and ζ, with all other parameters fixed at
their optimal values. It is obvious that the conditional PDFs are non-Gaussian so the Gaussian
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Figure 3.13 Conditional PDFs of � and ζ
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approximation is accurate only when the number of data points is sufficiently large. On the
other hand, the Bayesian spectral density approach is capable of offering the correct inference
without assuming the type of the updated PDF. In the case of a non-Gaussian updated PDF,
the statistical moments, such as the variances, can be computed by Monte Carlo simulation.
Table 3.3 shows the most probable value (mode), mean and standard deviation for each param-
eter. Note that the most probable values and the mean values are not equal since the distribution
is asymmetric.

Table 3.3 Identification results for one set of data with T = 60 s

Parameter Actual θ̃ Optimal θ� Mean S.D. σ

� 4.0000 4.0108 4.0112 0.0247
ζ 0.0100 0.0051 0.0061 0.0020
Sf0 1.0000 0.8658 0.9055 0.1385

3.4.4 Concluding Remarks

The Bayesian spectral density approach for updating the probability density function of the
model parameters for general multi-degree-of-freedom systems using wide-band response
measurement was presented. The posterior PDF for the model parameters can be accurately
approximated by a multi-variate Gaussian distribution when the number of data points is
sufficiently large. This property provides an efficient way for quantifying the uncertainty. It
should be noted that the Gaussianity approximation of the posterior PDF is not an assump-
tion of the method but the consequence of a large number of data points. The calculated
mean and covariance matrix of the posterior distribution offer an estimate of the optimal
values of the model parameters and the associated uncertainty. Quantification of these un-
certainties is very important if the identification results are utilized for further processing,
e.g., for damage detection and updating of reliability. Estimation of the uncertainty does not
require calculation of a number of optimal values, obtained from several sets of data, and
then calculation of the statistics of these optimal estimates. The Bayesian spectral density ap-
proach can be applied also for non-Gaussian input/response [96] since discrete Fourier trans-
formed signals are approximately Gaussian regardless of the distribution of the time-domain
signal [230].

3.5 Optimal Sensor Placement

The Bayesian spectral density approach addresses the problem of parametric identification and
quantification of the associated uncertainty using response measurement for a given configura-
tion of sensor arrangement. The quality and accuracy of the experimental parameter estimates
depend on the number and location of sensors in a structure. In this section, the problem of
enhancing the quality of the model parameter estimation in relation to the location and num-
ber of sensors is investigated. There are two issues to be addressed. The first one deals with
the problem of determining the optimal degrees of freedom to place a prescribed number of
sensors in a structure in order to provide the least possible uncertainty of the identification
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results with ambient structural response measurement. The second issue is to quantify the
quality of parameter estimates as a function of the number of sensors placed in a structure. The
answer to the latter issue is useful for making a cost-effective decision regarding the structural
instrumentation and the choice of number of sensors to be placed in the structure.

Previous work regarding the first issue of optimally locating a given number of sensors in a
structure has been carried out by Udwadia [262]. In this work, a rational statistical approach
was developed based on the Fisher information matrix for the model parameters. Heredia and
Esteva (1998) extended this work for the case of large model uncertainties expected in model
updating [102]. In both methods, the optimal sensor configuration is the one that minimizes
the expected Bayesian loss function, which is defined as the trace of the inverse of the Fisher
information matrix, with respect to the sensor configuration [82]. However, only the first issue
was considered for optimally locating a given number of sensors in a structure.

Information entropy is a natural single measure of the degree of uncertainty of random
variables and random vectors [117, 233]. Papadimitriou et al. (2000) proposed to use it for
optimal sensor placement since it best corresponds to the objective of structural testing, which
is to minimize the uncertainty in the model parameters [196]. It immediately follows that the
optimal sensor configuration is selected as the one which minimizes the information entropy.
This entropy-based measure resolved the issue related to the arbitrariness in selecting an
appropriate norm for the Fisher information matrix in the previous approaches. Moreover, the
more important advantage of the information entropy measure is that it provides the basis
for comparison between sensor configurations involving different numbers of sensors. This is
particularly useful for trading off the cost of instrumentation with the information gained from
additional sensors about the state of a structure, thus making cost-effective decisions regarding
the optimal instrumentation.

The information entropy of the uncertain parameters θ is defined as [148, 233]:

Hθ(�|Sav
K , C) = −E[ln p(θ|Sav

K , �, C)]

= −
∫

	

p(θ|Sav
K , �, C) ln p(θ|Sav

K , �, C)dθ
(3.67)

where E[.] denotes the mathematical expectation with respect to θ according to the posterior
distribution p(θ|Sav

K , �, C), and � is the sensor configuration vector of dimension Nd , com-
prised of zeros and ones with the position of the non-zero elements specifying the No measured
DOFs. Therefore, the observation matrix Lo in Equation (3.44) depends on �. The information
entropy will be used to assess the possible sensor configurations.

3.5.1 Information Entropy with Globally Identifiable Case

The updated PDF p(θ|Sav
K , �, C) in Equation (3.67) is given by Equation (3.60) with

Equation (3.61) for the general case of uncertain excitation. The formulation presented here
is based on the spectral density estimators obtained from the measured data D and it de-
pends on the class of structural, excitation and prediction-error models chosen to describe
the system. The updated parameter vector θ� is obtained by minimizing the objective func-
tion J(θ) = − ln p(θ|C)p(Sav

K |θ, �, C) with the likelihood function p(Sav
K |θ, �, C) given by

Equation (3.61). Furthermore, the updated PDF of the model parameter vector θ can be
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approximated [136] by a Gaussian distribution G(θ; θ�,H(θ�|�)−1) with mean θ� ≡ θ(�)�

and covariance matrix H(θ�|�)−1, where H(θ�|�) denotes the Hessian of the objective func-
tion, evaluated at θ�. The (l, l′) element of the Hessian matrix H(θ�|�) is given by:

H(l,l′)(θ�|�) = − ∂2

∂θl∂θl′
ln p(θ|C)

∣∣∣∣
θ=θ�

+

Ns

∑
k∈K

[
∂2

∂θl∂θl′

(
ln

∣∣∣∣E[Sy,N (ωk)|θ, C]

∣∣∣∣ + tr{(E[Sy,N (ωk)|θ, C])−1Sav
y,N (ωk)}

)]

θ=θ�

(3.68)

The first term on the right hand side vanishes for a non-informative prior distribution that is
absorbed into the normalizing constant. In this case, the information entropy can be simplified
as follows:

Hθ(�|Sav
K , C) = 1

2
Nθ[ln (2π) + 1] − 1

2
ln

∣∣∣∣H(θ�|�)

∣∣∣∣ (3.69)

where Nθ is the number of uncertain parameters in θ. A larger value of the information entropy
indicates a higher level of uncertainty of the random variables. In the extreme case where the
Hessian matrix is closed to singular (close to an unidentifiable case), the information entropy
tends to infinity.

3.5.2 Optimal Sensor Configuration

In a model identification methodology, the information about the parameters of the model is
provided by the measured data. The amount of the information depends on the sensor config-
uration which clearly affects the updated PDF p(θ|Sav

K , �, C) of the model parameters and,
consequently, the uncertainty in the parameter estimates. The sensor configuration should be
selected such that the resulting measured data are most informative about the condition of the
structure or, equivalently, induces the least possible uncertainty for the parameter estimates.
Therefore, the optimal sensor configuration is selected to be the one with minimal informa-
tion entropy. Although this is a well-posed discrete optimization problem, there is a major
complication arising from the explicit dependence of the information entropy on the structural
response measurement which is not available at the initial stage of designing the experiment.
However, this difficulty can be overcome by considering the limiting case of large number of
data sets Ns instead of using Monte Carlo simulation, which is computationally demanding.

In globally identifiable case with large number of data points, the updated PDF
p(θ|Sav

K , �, C) can be well approximated by a Gaussian distribution with a mean equal to the
most probable value θ� and covariance matrix equal to the inverse of the Hessian H(θ�|�)−1.
Moreover, for a large number of data sets, the spectral density estimators Sav

y,N (ωk) can be
replaced, using the law of large numbers, by its expected value E[Sy,N (ωk)|θ, C] given in
Equation (3.48). Substituting the asymptotic values of the spectral density estimators into
Equation (3.68), the resulting Hessian matrix H(θ�|�,Sav

K ) = H(θ�|�) can be obtained for
large N and the dependence on the details of the measurement is removed. The resulting Hes-
sian matrix H(θ�|�) and the posterior PDF of the parameter vector θ do no longer depend
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on the data explicitly. The only dependence of H(θ�|�) on the data comes implicitly through
θ� = θ(�,Sav

K )�. Consequently, the information entropy for a given set of data is completely
defined by the optimal value θ(�,Sav

K )� of the model parameters computed for the given data
while the spectral density details of the measured data do not enter in the estimation.

However, since the data is not available in the design process, estimation of the optimal
parameters θ� cannot be obtained at this stage. In order to proceed with the design of the
optimal sensor configuration, this estimate has to be assumed. In practice, useful designs can
be obtained by taking the optimal parameters θ� to be the nominal parameter vector θη chosen
by the designer. In this case of a Gaussian distribution, the information entropy takes the
following form for large N:

Hθ(�|Sav
K , θη, C) = 1

2
Nθ[ln (2π) + 1] − 1

2
ln

∣∣∣∣H(θη|�)

∣∣∣∣ (3.70)

This depends on the sensor configuration vector in � and the chosen parameters θη of the
nominal model. The optimal sensor configuration given the nominal model is chosen as the
one that minimizes this information entropy measure over all possible configurations.

3.5.3 Robust Information Entropy

The optimal sensor configuration, obtained by minimizing Equation (3.70), depends on the
designer’s choice of the nominal model determined by the nominal parameter vector θη. One
way to account for the uncertainty in the nominal model is to use a prescribed PDF p(θη|C) for
θη. In this case, the optimal sensor configuration becomes the one that minimizes the robust
information entropy Eθ′ [Hθ(�|Sav

K , θ′, C)] which is a measure of the overall uncertainty in
both θ and θη:

Eθ′ [Hθ(�|Sav
K , θ′, C)] =

∫

	

Hθ(�|Sav
K , θ′, C)p(θ′|C)dθ′

= 1

2
Nθ[ln (2π) + 1] − 1

2

∫

	

ln

∣∣∣∣H(θ′|�)

∣∣∣∣ p(θ′|C) dθ′
(3.71)

The information entropy Hθ(�|Sav
K , θη, C) given by Equation (3.70) is a special case of the

robust information entropy Eθ′ [Hθ(�|Sav
K , θ′, C)] in Equation (3.71) and it corresponds to the

choicep(θ′|C) = δ(θ′ − θη), where δ(.) denotes the Dirac delta function. The multi-dimensional
integration over θ′ involved in Equation (3.71) can be carried out by Monte Carlo simulation
or by an asymptotic expansion developed for these types of integrals [197].

The present formulation for optimal sensor placement in terms of the information entropy
provides a rational procedure for comparing the uncertainty of the estimates of the parameter
values for different sensor configurations. Specifically, a direct measure of the uncertainty
reduction is provided by the change of the information entropy:


H(�; �ref ) = Eθ′ [Hθ(�|Sav
K , θ′, C)] − Eθ′ [Hθ(�ref |Sav

K , θ′, C)] (3.72)

where Eθ′ [Hθ(�|Sav
K , θ′, C)] and Eθ′ [Hθ(�ref |Sav

K , θ′, C)] represent, respectively, the robust
information entropy for a sensor configuration � and the reference sensor configuration �ref .
The reference sensor configuration �ref may correspond to different number of sensors from
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that in the configuration vector �. Equivalently, the reduction in uncertainty can also be quan-
tified by the parameter-uncertainty ratio defined by [196, 296]:

σ

σref

= exp

[

H(�; �ref )

Nθ

]
(3.73)

where σ and σref represent the measure of the spread of the posterior PDF of the model
parameters for the sensor configurations � and �ref , respectively. The smaller the value of the
parameter uncertainty ratio, the smaller the uncertainty in the parameter estimates, and hence
the better identification quality, with �. For more details and examples of the information
entropy-based method, please refer to Yuen et al. [296].

3.5.4 Discrete Optimization Algorithm for Suboptimal Solution

For a dynamical system with Nd degrees of freedom and No sensors, the total number of
possible sensor configurations is:

Nd
CNo = Nd!

No!(Nd − No)!
(3.74)

which is huge for large Nd and No >> 1. As a result, an exhaustive search for the optimal
configuration may be computationally prohibitive and genetic algorithms [91] can be used to
solve this discrete optimization problem. It is particularly useful for this application since it is
desired to obtain the measurements from different DOFs being complementary in terms of the
information for different modes or different parameters.

Even though genetic algorithms provide a feasible solution for this optimization problem, the
following sub-optimal algorithm is an alternative. In order to place No sensors to a structure,
the problem of placing only one sensor is first considered. In this case, exhaustive search
for the Nd possible DOFs can be proceeded and use d1 to denote the optimal one. Then,
optimization problem is continued by adding one more sensor in additional to the one at
the dth1 DOF. In other words, an exhaustive search is carried out for the following Nd − 1
possible configurations: (d1, 1), (d1, 2), . . . , (d1, d1 − 1), (d1, d1 + 1), . . . , (d1, Nd) and use
d2 to denote the optimal DOF for the second sensor. This procedure is continued until all the
No DOFs are found. The total number of configurations to be examined is:

Nd + (Nd − 1) + · · · + (Nd − No + 1) = No(2Nd − No + 1)

2
(3.75)

which is significantly smaller than Nd!/No!(Nd − No)!. For example, if Nd = 1000 and No =
10, the proposed algorithm requires evaluation of 10(2000 − 10 + 1)/2 = 9955 configurations
but exhaustive search requires 1000!/10!990! ≈ 2.6 × 1023.

Previous studies showed that the optimal DOFs for No sensors do not necessarily include the
optimal DOFs for No − 1 sensors. Therefore, it is emphasized that the sensor configuration
obtained by this algorithm is in general not optimal but it is expected to be a suboptimal.
More importantly, this suboptimal sensor configuration is more robust than the optimal one. In
actual practice of modal testing or health monitoring, malfunctioning of some of the sensors
is commonly encountered. In this case, the suboptimal configuration may perform better than
the optimal configuration when there are a few missing observed DOFs.
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3.6 Updating of a Nonlinear Oscillator

The first application is concerned with the nonlinear Duffing oscillator of known mass M = 1.0
kg subjected to zero-mean stationary Gaussian white noise f with spectral intensity Sf0:

Mẍ(t) + Cẋ(t) + K1x(t) + K3x(t)3 = f (t) (3.76)

This oscillator has a nonlinear restoring force: −K1x(t) − K3x(t)3. A stationary displacement
response time history D was generated with parameter vector θ̃ = [C̃, K̃1, K̃3, S̃

(1)
f0, σ̃

(1)
ε ]T

where C̃ = 0.1 kg/s, K̃1 = 5.0 N/m, K̃3 = 1.0 N/m3, S̃
(1)
f0 = 0.02 N2 s and (σ̃2

ε )(1) = 0.0026

m2 (15% noise). The sampling time interval is 
t = 0.05 s, with total measurement duration
T = 400 s, so the total number of data points is N = 8000.

There is no closed-form solution for the auto-correlation function or the power spectral
density function of this nonlinear system. Therefore, an equivalent linear system is utilized to
obtain the approximated mean of the spectral density estimator. Multiplying Equation (3.76)
with x(t − τ) and taking expectation yields:

MR̈x(τ) + CṘx(τ) + K1Rx(τ) + K3E[x(t − τ)x(t)3] = 0 (3.77)

where Rx(τ) ≡ E[x(t − τ)x(t)], ∀t ∈ R, is the auto-correlation function. The term E[x(t −
τ)x(t)3] can be approximated by neglecting the fourth cumulant term [161]:

E[x(t − τ)x(t)3] ≈ 3σ2
xRx(τ) (3.78)

where σ2
x = Rx(0) is the response variance. Therefore, the differential equation for the approx-

imated response auto-correlation function is readily obtained:

MR̈x(τ) + CṘx(τ) + (K1 + 3σ2
xK3)Rx(τ) = 0 with Rx(0) = σ2

x and Ṙx(0) = 0 (3.79)

It is a second-order linear ordinary differential equation with constant coefficients, and its
analytical solution is given by:

Rx(τ) = σ2
xe−ζeq�eq|τ|

[
cos

(
�eq

√
1 − ζ2

eqτ
)

+ ζeq√
1 − ζ2

eq

sin
(
�eq

√
1 − ζ2

eq|τ|
)]

(3.80)

where �eq and ζeq are the natural frequency and damping ratio of the equivalent linear system
and they are given by:

�eq =
√

K1 + 3σ2
xK3

M
(3.81)

and

ζeq = C

2M�eq

(3.82)



Bayesian Spectral Density Approach 133

which depend on the response variance σ2
x . Furthermore, for linear systems, it is well known

that the response variance is [157]:

σ2
x = πSf0

2Mζeq�3
eq

(3.83)

By solving Equations (3.81)–(3.83), the response variance of the Duffing oscillator can be
approximated by:

σ2
x = K1

6K3

(√
1 + 12πK3Sf0

CK2
1

− 1

)
(3.84)

Then, for a given parameter vector θ, the mean spectral density estimator E[Sy,N (ωk)|θ, C]

can be obtained by using Equation (3.28). Finally, the updated PDF p(θ|S(1)
K , C) is readily

obtained using Equation (3.36) with Equation (3.35), where the prior PDF p(θ|C) is taken as
constant over the region where p(S(1)

K |θ, C) is large, i.e., a locally non-informative prior PDF
[31]. Figure 3.14 shows the zigzag spectrum estimated by the measured time history. The peak
in this spectrum is around 2.2 to 2.3 rad/s, which is consistent with the small-amplitude natural
frequency of the oscillator, which is

√
5/2π Hz = 0.356 Hz = 2.24 rad/s. The frequency index

set is taken to beK = {1, 2, . . . , 300}, i.e., up to 0.75 Hz or 4.71 rad/s. The smooth curve shows
the theoretical mean spectrum of the equivalent linear system. This confirms that the equivalent
linear system approximates the Duffing oscillator well in this level of excitation.
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Figure 3.14 Response spectrum of the Duffing oscillator
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Figure 3.15 Conditional updated PDF

Figure 3.15 shows the conditional updated PDF p(K1, K3|S(1)
K , C̃, S̃

(1)
f0, (σ̃2

ε )(1), C) normal-
ized in such a way that the peak value is unity. It is clearly seen that this case is unidentifiable,
i.e., given one set of dynamic data, the estimates of K1 and K3 suffer from large uncertainty as
there are infinitely many combinations of K1 and K3 which give similar values for the updated
PDF [284].

Another response time history D(2) was generated for the same oscillator (the same C̃, K̃1

and K̃3) for a higher level of excitation: S̃(2)
f0 = 0.04 N2 s and (σ̃2

ε )(2) = 0.0069 m2 (15% noise).
This case is, again, unidentifiable. The updated PDF is plotted together with the previous one
in Figure 3.16 and the trajectories of the peaks in the (K1, K3) plane have different slopes. By
Equation (3.79), the equivalent linear system has a stiffness K1 + 3σ2

xK3 so different Duffing
oscillators with K1 + 3σ2

xK3 = K (a constant) are associated with the same equivalent linear
stiffness. The coefficient 3σ2

x depends on the level of excitation Sf0, showing that different
levels of excitation lead to different slopes of the peak trajectories in the (K1, K3) plane. Since
the coefficient 3σ2

x is always positive, the slope of the peak trajectories in the (K1, K3) plane
is always negative. This is expected because a smaller value of K1 can be compensated by a
larger value of K3, and vice versa.

Figure 3.16 suggests that if two dynamic data sets D(1) and D(2) are utilized simultane-
ously, the information from D(2) is complimentary to D(1) to provide an extra mathemat-
ical constraint for the uncertain parameters, especially for K1 and K3. The updated PDF
using both sets of data is given by the product of the individuals. As a result, the iden-
tification problem will become globally identifiable. Table 3.4 shows the updated values

θ� = [C�, K�
1, K

�
3, S

(1)
f0

�
, S

(2)
f0

�
, σ2

ε

(1)�
, σ2

ε

(2)�
]T and the calculated standard deviations σc, σK1 ,
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Figure 3.16 Conditional updated PDFs

σK3 , σ
S

(1)
f0

, σ
S

(2)
f0

, σ
σ2

ε
(1) and σ

σ2
ε

(2) obtained using both data sets. It also gives the coefficient of

variation (COV) for the parameter estimates and the associated normalized distance. This nor-
malized distance represents the absolute value of the difference between the identified optimal
value and exact value, normalized with respect to the corresponding calculated standard de-
viation. The normalized distances in Table 3.4 are between 0.2 to 2.1, suggesting that the
procedure is not producing biased estimates. This verifies that the errors are not unusually
large nor unreasonably small, compared to the calculated standard deviations.

The optimal estimates of the model parameter vector θ are not sensitive to the choice of the
cutoff frequency, i.e., 0.75 Hz in this case, as long as it is larger than the frequency at which
the peak of the response spectral density estimates occurs. Identification using the same sets of

Table 3.4 Comparison of the actual parameters versus the optimal estimates and their statistics for the
Duffing oscillator

Parameter Actual θ̃ Optimal θ� S.D. σ COV |θ̃−θ� |
σ

K1 5.0000 4.9380 0.1238 0.025 0.50

K3 1.0000 0.9267 0.2863 0.309 0.26

C 0.1000 0.0866 0.0185 0.214 0.72

S
(1)
f0 0.0200 0.0190 0.0016 0.086 0.64

S
(2)
f0 0.0400 0.0476 0.0037 0.077 2.08

(σ2
ε )(1) 0.0026 0.0019 0.0030 1.632 0.26

(σ2
ε )(2) 0.0069 0.0055 0.0066 1.205 0.22
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data was also carried out with 10.0 Hz (the Nyquist frequency in this case). The results were
virtually the same as those using 0.75 Hz except that there were significant reductions in the
uncertainty of the noise levels. In other words, utilizing a larger frequency range gives better
estimates for the noise level only. In this case, the frequency range is chosen to include all
nonzero frequencies up to 1.5ωρ where ωρ is the frequency at which the peak of the spectral
estimates Sy,N (ωk) occurs. It is computationally efficient to use such a range without sacrificing
the quality of the identification for the model parameter vector θ.
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Figure 3.17 Contours of the marginal PDF for K1 and K3

Figure 3.17 shows the contours of the marginal PDF of K1 and K3. It is not surprising
that there is negative correlation on the estimates of these two parameters since the equivalent
linear stiffness of the system is contributed by the combination of K1 and K3. In this case, the
uncertainty for K3 is significantly larger than that of K1 since the level of the excitation is mild
and the nonlinear cubic term is difficult to be identified.

In order to have better identification results for the nonlinear term, the spectral density of
the excitation of the second set of data is increased to S

(2)
f0 = 0.06 N2 s so that the response

is of higher level of nonlinearity. Figure 3.18 shows the contours of the marginal PDFs using
two sets of data with S

(1)
f0 = 0.02 N2 s and S

(2)
f0 = 0.06 N2 s. It can be clearly seen that the

uncertainty of K3 is significantly reduced since the data contain more information about the
nonlinear behavior. However, the optimal value of K3 deviates from the actual value.

Then, the excitation level is further increased and identification is proceeded again with
two sets of measurements with S

(1)
f0 = 0.02 N2 s and S

(2)
f0 = 0.08 N2 s. Figure 3.19 shows

the contours of the marginal PDFs. The posterior uncertainty of K3 is further reduced but its
updated value departs further from the actual value and this can be considered as biased. The
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Figure 3.18 Contours of the marginal PDF for K1 and K3 with S
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reason is that the equivalent linear system governed by Equation (3.80) does not satisfactorily
reflect the original nonlinear system in terms of the time–frequency structure. The error of the
cumulant approximation in Equation (3.78) induces a modeling error in the spectral density
estimator and this contributes to the bias of the identification results.

Figure 3.20 shows the response spectrum for Sf0 = 0.08 N2 s. Even though the theoretical
mean spectrum of the equivalent linear system agrees well with the spectral density estimator
computed using the measurement, the positions of their peaks are slightly different. Therefore,
for nonlinear systems subjected to moderate to strong excitation, a more accurate computational
method for the response spectrum is necessary. An alternative is to obtain the theoretical
spectrum by simulation but this is a computationally demanding task.
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Figure 3.20 Response spectrum of the Duffing oscillator with Sf0 = 0.08 N2 s

3.7 Application to Structural Behavior under Typhoons

3.7.1 Problem Description

A tropical cyclone is a common natural phenomenon formed by an unstable overlying
atmosphere. In the classification by the Regional Specialized Meteorological Centers, a
tropical cyclone with maximum 10-min averaged wind speed over 118 km/h is defined as a
typhoon, which is equivalent to category one or above in the Saffir–Simpson hurricane scale.
According to the Joint Typhoon Warning Center, there were on average seventeen tropical
cyclones per year reaching the typhoon intensity level in the northwestern Pacific Ocean
and most of them occurred in the summer. Incidentally, there are many big cities with high
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population and numerous high-rise buildings in the typhoon profolic region so these buildings
have to be frequently exposed to this severe aerodynamic condition, especially in the summer.
Furthermore, due to the unsteady characteristics of the wind speed and wind pressure, buildings
have to withstand strong wind pressure in various directions, which induce many challenging
problems for analysis, design and construction [241]. Therefore, it is valuable to investigate
the behavior of infrastructures during typhoons in order to have a better understanding
for improving future designs and developing more reliable structural health monitoring
systems.

Parallel to the remarkable revolution of data acquisition hardwares in recent decades [247],
there has also been enormous development on the methodologies in model updating and struc-
tural health monitoring. As a result, structural health monitoring for large infrastructures by
full-scale field measurement becomes feasible. Abnormal reduction of the modal frequencies
of a structure infers loss of structural stiffness so modal frequencies are commonly utilized as
the diagnostic indicators. Previous work by Salawu (1997) summarized that a 5% reduction
in the modal frequencies indicates probable structural damage [227]. On the other hand, the
damping ratio is another indirect indicator that provides information about the status of energy
dissipation of a structure. The physical mechanism of energy dissipation is complex and in-
volves a number of factors, such as structural configuration, interfacial mechanism, materials
composition, and aerodynamic effects, etc. Therefore, a large uncertainty is encountered in
the modeling and quantification. Kareem and Sun (1990) compared several classical method-
ologies and concluded that the coefficient of variation in the estimation of damping ratios can
be up to 80% [131]. Substantial changes of the modal frequencies and damping ratios were
observed in recent studies on several landmarked infrastructures during typhoons. For exam-
ple, Li et al. (2000) compared the structural response of a hollow truss tall building system
under four typhoons [154], while Xu et al. (2003) analyzed the structural behavior of a high-
rise reinforced concrete building under typhoon York, which had the strongest strength and
longest duration among all the typhoons which have affected Hong Kong since 1983 [276].
These studies also demonstrated that typhoons can produce temporary or permanent effects to
structures and more investigations are necessary to understand the typhoon effects to structural
systems.

In this study, the acceleration response time histories of the East Asian Hall in Macao were
recorded under the passage of two strong typhoons, named Kammuri and Kuri, in August 2008.
Globally speaking, the two typhoons had similar tracks in the northwestern Pacific Ocean.
They passed through the north of the Philippines, entered the south China sea and landed at the
southern coast of China. However, Kammuri passed through the south side of Macao but Nuri
the north side. Since the typhoons in the northern hemisphere always spin counterclockwise
due to the Coriolis effect, completely different aerodynamic conditions were generated onto
the building due to the small variations in their paths. The influences of the structural behavior
have also been investigated. The Bayesian spectral density approach is applied to analyze the
full-scale field measurement of the East Asia Hall. The modal parameters of the structure
and the excitation are identified for different time interval during the typhoons in order to
investigate the wind impact on the building. It is observed that the modal frequencies of the
instrumented building were reduced substantially during the two typhoons, but the temporary
reduction recovered almost instantly after the typhoons dissipated. Moreover, the correlation
between the damping ratios and the intensity of the excitation is discussed.
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3.7.2 Meteorological Information of the Two Typhoons

The meteorological information including the wind speed and wind direction is regularly
monitored by the Meteorological and Geophysical Bureau of Macao, namely Direcção dos
Serviços Meteorológicos e Geofísicos (SMG) in Portuguese. The station is only 1.25 km
away from the East Asian Hall. It is important to emphasize that the Bayesian spectral density
approach requires output-only measurements. The meteorological information provided by
the SMG is the 1-min averaged wind speed and this sampling time step is too large for
computing the response time histories of the building. This meteorological information is
used for reference only but does not participate in the identification process.

3.7.2.1 Typhoon Kammuri

Kammuri was the 9th tropical cyclone in the western Pacific Ocean and the 3rd typhoon
affecting Macao in 2008. The tropical depression was formed on 3 August 2008 at longitude
21.0 N and latitude 105.2 E. Its highest 10-min averaged wind speed and lowest pressure were
95 km/h and 975 hPa (or 975 mbar = 97.5 kPa), respectively. Departing from the northern
Philippines, the intensity of the Kammuri kept on increasing and it was classified as a typhoon
by the SMG at 13:00 on 4 August (GMT + 08:00). Ten hours later, it reached the severe
tropical storm level with gale signal no. 8 and lasted for 13 h. The ‘eye’ of this typhoon ‘flitted’
approximately 90 km south from Macao and it moved slowly at 9 km/h only. Finally, the
intensity decreased rapidly after it landed at the Guangxi province on 7 August. The official
typhoon signals from the SMG, the corresponding wind speed interval, the gust speed and the
passage time are listed in Table 3.5. The wind speeds shown in this table are the observed
values at the SMG station but not the maximum wind speed of the typhoon. Its track and other
details are available on the website of the SMG (http://www.smg.gov.mo/e index.php). The
10-min averaged wind speed (dots) and wind direction (crosses) are shown in Figure 3.21
starting from 19:00 on 5 August since the wind speed in the period of signal no. 1 was low
in this case. Here, the wind direction counts from the north clockwise. From example, 90◦
implies an easterly wind. When the Kammuri was approaching Macao, the wind direction was
around 20◦ from the north and it remained so until the highest wind speed was reached. Then,
it changed rapidly from 20◦ to 130◦ within 7 h and the wind speed dropped to 20 km/h only
before the typhoon signal was cancelled.

Table 3.5 Typhoon signals announced by SMG

Hoisted time (yy/mm/dd GMT + 08:00)Typhoon 10-min averaged wind Gust speed
signal speed (km/h) (km/h) Kammuri Nuri

1 < 41 — 13:00 04/08 20:00 20/08
3 (41, 62) >110 20:15 05/08 00:30 22/08
8 (63, 117) >180 07:00 06/08 12:00 22/08
3 (41, 62) >110 20:00 06/08 00:30 23/08
0 < 41 — 04:00 07/08 11:00 23/08
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Figure 3.21 Wind characteristics of the Kammuri

3.7.2.2 Typhoon Nuri

After the Kammuri, there were two weeks of calm weather before another typhoon, Nuri,
affected Macao from 20 to 23 August 2008. Its track and other information are also available
on the website of the SMG. The official typhoon signals from the SMG with the corresponding
wind and gust speed interval and the duration are also listed in Table 3.5. Nuri was formed as
a tropical depression on August 17. After making the first landing in the Philippines, it was
rapidly intensified to a tropical storm on the next day and gradually approached the southern
China coast. Then, it ‘lashed’ straight to Hong Kong. After landing in the Pearl River delta
region, the Nuri dissipated rapidly and its wind speed dropped back to ‘calm level.’ The
track was similar to the Kammuri, except that it passed through the northeast side of Macao.
The maximum 10-min averaged wind speed and the lowest pressure reached 140 km/h and
955 hPa, respectively, so the strength of the Nuri was stronger than the Kammuri. With a
four-day duration, the typhoon signal of the Nuri was ‘cancelled’ after it landed in Hong
Kong. The wind characteristics including the 10-min averaged wind speed and the wind
direction of the Nuri are shown in Figure 3.22 starting from 19:00 on 20 August. Even though
the strength of the Nuri was higher than the Kammuri, the observed wind speed generated in
Macao by the Nuri was lower than that by the Kammuri. Moreover, the main wind direction
of the Nuri covered all 360◦ because its track was closer to Macao. The 10-min averaged wind
speed increased from less than 10 km/h to approximately 60 km/hr and the wind direction
remained ‘on north’ around the peak of the wind speed. Afterwards, the wind speed dropped
rapidly and the wind direction changed drastically to an almost opposite direction because
the Nuri landed in Hong Kong, which is very close to Macao. After the 52nd hour, the
typhoon signal of the Nuri was downgraded to signal no. 3 and the wind speed dropped to
20 km/h.
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Figure 3.22 Wind characteristics of the Nuri

3.7.3 Analysis of Monitoring Data

3.7.3.1 Instrumentation Arrangement and Measurements

The East Asian Hall, depicted in Figure 3.23, is a 22-story 64.70 m reinforced concrete building.
It has an L-shape floor layer with asymmetric spans of 51.90 m and 61.75 m. In contrast to

N

61.75 m51.90 m

12.70 m 12.70 m

A

B

1 2

Figure 3.23 Picture and plan view of the East Asia Hall
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most of the previously monitored buildings with rectangular or circular floor plans and large
height-to-width aspect ratios [154, 155, 276], the East Asian Hall has an L-shape floor plan and
a small aspect ratio. Therefore, the structural behavior cannot be approximated by a flexural
beam. Because of the particular geometry, the structural dynamic behavior induced by the wind
pressure fluctuation is more complex. Field measurements were collected with two state-of-
the-art servo-accelerometers based on a standard exploration geophone spring–mass system,
and the sensitivity was selected to be 50 V/g. The accelerometers were installed at the junction
of the two spans in two orthogonal directions on the 18th floor, which is 53.5 m from the
ground level.

Acceleration time histories were obtained for the whole duration of these two typhoons
with a sampling frequency of 500 Hz. In order to demonstrate the change of vibration level,
the response rms of each 10-min interval is computed for the Kammuri and is depicted in
Figure 3.24. The 10-min averaged wind speed is also shown in the lower part of the figure for
comparison. When the signal no. 8 was ‘hoisted’, the acceleration response was approximately
ten times of that under calm situation. One may wonder why the peaks of the response rms
and the wind speed were several hours apart. When a building is ‘attacked’ by a typhoon,
both the magnitude of the wind speed and the wind direction affect the structural response.
According to the Task Committee on Wind Forces, Committee on Loads and Stresses, Structural
Division, ASCE [260], the drag and lift forces on an L-shape prism vary significantly with
different attacking angles. By Figure 3.21, the wind direction changed rapidly from 20◦ to
130◦ within 7 h after the maximum wind speed was reached. By Figures 3.21 and 3.24, the
maximum structural response occurred between the 17th and 19th hour and the attacking
angle was in the range from 60◦ to 75◦ from the north with the ‘eye’ of the typhoon at (21.4 N,
113.3 E). Meanwhile, the wind speed was around 55–60 km/h, which was significantly lower
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Figure 3.24 Variation of the response rms (Kammuri)
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the maximum wind speed (75 km/h) that occurred at the 16th hour. This will be discussed
further in the following section. The same plot is also shown in Figure 3.25 for the Nuri. The
time difference between the peak wind speed and the peak response rms is not obvious in this
case since the wind field is completely different as the Nuri was about to land after generating
the highest wind speed to Macao.
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Figure 3.25 Variation of the response rms (Nuri)

The acceleration spectra can be obtained by Equation (3.25) and these are shown in Fig-
ure 3.26 for different phases of the Kammuri. Except for the case of signal no. 8, the spectra
have high values around zero frequency and decrease until about 0.5 Hz. This is consistent
with some well-known wind spectra, such as the Davenport spectrum or Harris spectrum.
However, this cannot be observed in the spectrum under signal no. 8 and it suggests that the
time–frequency content of the wind excitation in the storm level is significantly different from
the others. Furthermore, it is observed that the low-frequency spectral values are all in the
order of 10−6 m2 s−3, regardless of the level of the typhoon. Another noteworthy point is that
the first peak in the first measured channel does not appear in the second channel. This implies
that the mode shape component associated with the second measured channel is roughly zero
for the first mode.

3.7.3.2 Identification of Modal Parameters

Since the wind pressure is nonstationary if the whole duration time window is considered, the
structural response is also nonstationary [47]. Therefore, special treatments have to be taken
in the identification process. In this study the acceleration measurement of the first 10 min of
each half-hour interval is used for identification in order to investigate any possible change
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Figure 3.26 Spectra of the measurements for different typhoon signal levels (Kammuri)

of the structural properties in different phases of the typhoons. For each 10-min record, it
is partitioned into four sets with an equal time duration, i.e., Ns = 4, and then the averaged
spectrum can be obtained for identification. The reason for this arrangement is that even though
the response is nonstationary in the whole time window, it can be considered approximately
stationary in each of the 2.5-min interval. According to the acceleration spectra in Figure 3.26,



146 Bayesian Methods for Structural Dynamics and Civil Engineering

the first four modes have the most significant contribution to the structural response and they
are considered for identification in this study, i.e., Nm = 4.

The diagonal elements of the excitation spectral intensity matrix describes the energy of
the corresponding modes. The variations of their identified values are shown in Figures 3.27
and 3.28 for the Kammuri and Nuri, respectively. Note that comparing the spectral intensities
of the modal forces for the different modes is meaningless since their values depend on the
normalization of the mode shapes as discussed in Section 3.3.1.2. However, the time variation
of the spectral intensity of a mode indicates the variation of the excitation energy with respect
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Figure 3.27 Variation of the identified modal spectral intensity of the excitation by the Kammuri
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to time. For the Nuri, the peak values of the wind speed and the spectral intensity of the
modal forces occurred simultaneously at around the 40th hour, which shows that the structure
experienced the maximum excitation during the highest wind speed. However, in the case of
the Kammuri, the peaks of the spectral intensities of the modal forces (19th hour) do not occur
at the same time with the maximum wind speed (16th hour). This echoes with the discrepancies
between the peaks of the acceleration rms and the wind speed.

The modal frequencies of the building are also identified. They correspond to the equivalent
linear system of the building since this structure may exhibit nonlinear behavior under this level
of excitation. Figure 3.29 shows the variation of the modal frequencies with the associated plus
and minus three standard derivations (±3σ) confidence intervals during the typhoon Kammuri.
This interval includes a probability of 99.7% for the equivalent modal frequency falling in this
range since the posterior PDF is approximately Gaussian. When the intensity of the excitation

0  5  10 15 20 25 30 35 
1.36

1.4

1.44

1.48

Ω
 (1

)
Ω

 (2
)

0  5  10 15 20 25 30 35 
1.62

1.64

1.66

1.68

1.7

0  5  10 15 20 25 30 35 
1.82

1.84

1.86

1.88

0 5  10 15 20 25 30 35 
2.2

2.25

2.3

2.35

2.4

2.45

Time (h)

Ω
 (3

)
Ω

 (4
)

Figure 3.29 Variation of the identified modal frequencies (Kammuri)
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increased, the modal frequencies had an opposite trend. As the typhoon gradually dispersed, the
modal frequencies of the building recovered to their initial levels. A similar behavior was also
observed during the Nuri. The largest reduction occurred in the first mode by approximately 5%
for the Kammuri, and 4% for the Nuri. The confidence interval confirms that the change of the
modal frequency was due to change of the structural behavior but not statistical uncertainty.
This implies a 10% reduction of the stiffness of the building during the Kammuri but this
was recovered immediately after the typhoon signal was cancelled. Furthermore, the restoring
force–displacement relationship of the building is softening as the structural stiffness decreases
for increasing excitation levels.

Similarly, Figures 3.30 and 3.31 show the variation of the damping ratios and mode shape
components, respectively, of the first four modes. The damping ratios and the mode shape
components did not show an obvious trend by observing these figures. For the first mode, the
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Figure 3.30 Variation of the identified damping ratios (Kammuri)



Bayesian Spectral Density Approach 149

0  5  10 15 20 25 30 35 
−0.2

−0.1

0

0.1

(1
)

φ 2
(2

)
φ 2

 

0  5  10 15 20 25 30 35 
2.5

3

3.5

4

4.5

0  5  10 15 20 25 30 35 
−0.4

−0.3

−0.2

0  5  10 15 20 25 30 35 
1

1.2

1.4

1.6

1.8

Time (h)

(3
)

φ 2
(4

)
φ 2

Figure 3.31 Variation of the identified mode shape components (Kammuri)

mode shape component in the second direction is roughly zero. This is consistent with the
observation from the acceleration spectra that the first mode did not appear. The average of
the mode shape components in the second direction were 3.2, −0.25 and 1.4 for the second to
fourth mode. The aspect ratio of the building is roughly 1.0 so its behavior is different from a
beam.

Figure 3.32 shows the semi-log scatter plot of the modal frequencies and the corresponding
spectral intensities of the modal forces. Due to the possible nonlinear characteristics of the
structure, the equivalent modal frequencies decreased with an increasing value of the corre-
sponding modal force. There were obvious negative linear correlations for the first three modes.
However, for the fourth mode, the identified values with different typhoons followed different
trend lines with different slopes. This indicates that the fourth modal frequency is sensitive
to some other factors, such as structural interaction properties, or other ambient conditions
(temperature, rainfall and humidity, etc.). Figure 3.33 shows a similar plot for the relationship
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between the damping ratios and the spectral intensities of the corresponding modal forces.
Although the points are more scattered than those in Figure 3.32, it is still clear to recog-
nize the positive correlation between the damping ratio and the spectral intensity. Averages of
the identified damping ratios are listed in Table 3.6. The damping ratios observed under the
Kammuri were higher than those under the Nuri for all modes since the structural response due
to the Kammuri was larger. The smallest damping ratio was associated with the third mode with
an average of about 0.5%, and the other modes were in the range from 0.68% to 1.56%. The
response amplitude-dependent damping ratios indicate that the building may have probably
gone through an hysteretic behavior under the typhoons. However, since the modal frequencies
and damping ratios were recovered after the dissipation of the typhoons, this behavior was not
deteriorating.

Table 3.6 Average of the identified damping ratios for different modes

Average of damping ratio (%)

Mode Kammuri Nuri

1 1.559 1.196
2 0.803 0.706
3 0.515 0.428
4 1.142 0.681

3.7.3.3 Vortex Shedding

Due to the particular geometry of the East Asian Hall, which is categorized as an irregular
prism, the effect of vortex-shedding has to be considered [181]. When the flow passes through
a body, vortices are generated in the downstream of the body and detach from either side
of the body alternately. Since the air flow generates periodically low-pressure vortices on
the downstream, the body is pushed to move towards the low-pressure zone. Because the
low-pressure zone occupies periodically changing region, vibration of the body is induced in
the perpendicular direction to the flow. This behavior is referred to as vortex shedding.

The Strouhal number Sr is commonly used to study vortex shedding:

Sr = �D

V
(3.85)

where � is the frequency of vortex shedding, D is the characteristic length scale of the body
and V is the wind speed. It was found that the Strouhal number is roughly 0.2 regardless of
the Reynolds number [140]. Therefore, the frequency of vortex shedding can be estimated by:

� = SrV

D
(3.86)

In this case, the frequency of vortex shedding is roughly in the range of � = 0.05–0.4 Hz, and
the value depends on the attacking angle. However, this range is significantly lower than the
modal frequencies of the structure so this effect does not induce resonant type of motion for
this building.
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The vortex-induced oscillation contributes mainly to the lower frequency range of the spec-
trum. This phenomenon becomes more notable as the wind speed increases since the vor-
tex shedding frequency is proportional to the wind speed and it will be closer to the fun-
damental frequency of the East Asian Hall. However, self-excited motion is not expected
since the vortex-shedding oscillation frequency is far from the resonant frequencies of the
building [203].

3.7.4 Concluding Remarks

The Bayesian spectral density approach was applied to identify the modal parameters of the
East Asia Hall by using the field measurement during the passage of two typhoons. The spectral
density approach was demonstrated to be flexible for applications and suitable for the current
usage. The magnitude of the acceleration was highly correlated to the wind speed but the wind
direction was also an important factor. The aerodynamic phenomenon including the vortex-
shedding and possible self-excited effect were carefully considered in this type of study but
they did not have critical effects on the building in the present study. By observing the change
of the identified values of the modal frequencies in the whole process of the two typhoons, it
was concluded that the modal frequencies had an obvious decreasing trend with the spectral
intensities of the corresponding modal forces while it was opposite for the damping ratios.
Furthermore, substantial reductions of the modal frequencies were observed under signal no.
8 but they were recovered instantly after the typhoons were dissipated.

3.8 Application to Hydraulic Jump

3.8.1 Problem Description

Hydraulic jump is an open channel flow phenomenon. It is the transition from supercritical
flow in the upstream to a subcritical flow starting at the jump end in the downstream. Since
hydraulic jump is similar to those of waves breaking in deep water and of coastal bores, it is
commonly used to study the flow characteristics of bores. In the literature, many researchers
illustrated the existence of oscillating characteristics, especially the repetitive mechanism of
the formation of surface rollers. Rouse et al. (1959) performed wind tunnel tests to study the
structure of hydraulic jumps, and this work concluded that the surface roller as a flow separation
is caused by the divergence of streamlines due to an abrupt increase in the flow area [224].
Peregrine and Svenden (1978) suggested that turbulence is initiated at the front toe [205] and
later Hoyt and Sellin (1989) proposed a similar suggestion that the initial stage of turbulent
flow resembles that of a mixing layer [113]. Ghafar et al. (1995) showed experimentally that
the local scour is due to a hydraulic jump formed on the sand bed and the existence of the
oscillating characteristics [88]. Yeh and Mok (1990) proposed that the surface roller formation
in bores is unsteady but periodical [279]. They suggested that once the surface roller is formed,
a large eddy of the roller is advected towards the downstream and the next surface roller is
then created. By quantifying the appearing frequencies of the systematically spaced turbulence
patches behind the bores, the surface roller generation–advection cycle in bores is confirmed.

This study investigates the frequency content and energy dissipation efficiency of surface
fluctuation for three types of hydraulic jumps, namely the undular jumps (Froude number



Bayesian Spectral Density Approach 153

<1.7), weak jumps (1.7 < Froude number < 2.5) and oscillating jumps (2.5 < Froude number
< 4.5). Time histories of the surface fluctuation were recorded by a resistant-type wave gauge
at the jump end. In the literature, it was observed that the characteristics of surface fluctuation
are highly related to the cyclic mechanism of the surface roller. Since the free surface interacts
with the release of bulk eddies by the roller, the roller frequencies are found to be similar to the
frequency of surface fluctuations in the range of Froude numbers used in the experiments. The
frequencies of the surface roller in the literature are estimated by engineering judgement so
there exists a large discrepancy by different studies. In this study, an investigation is continued in
this direction for the surface fluctuation in hydraulic jumps using the Bayesian spectral density
approach. The major frequency of the surface roller found in this approach is not by judgement
but by the statistical inference from the measurements. It turns out that both theoretical and
experimental results strongly support the existence of the periodicity of the surface roller.
Moreover, uncertainty of the natural frequency can be quantified. This is important information
for the comparison between the experimental and theoretical results.

3.8.2 Fundamentals of Hydraulic Jump

For an open channel flow, the dimensionless Froude number of the approaching flow can be
defined as follows:

Fr = V1√
gy1

(3.87)

where V1 and y1 are the water flow speed and depth immediately before the jump, and g is the
gravitational constant. The flow is supercritical when Fr > 1 and a hydraulic jump may happen
in this case. Figure 3.34 shows the details of the hydraulic jump. By approximating the inflow
and outflow with a uniform velocity distribution and hydrostatic pressure, the water depth
ratio between the downstream and upstream is readily obtained by the well-known Bélanger
equation, which is essentially the consequence of conservation of mass and conservation of
momentum:

y2

y1
= 1

2

(√
1 + 8Fr

2 − 1

)
(3.88)

where y2 is the downstream water depth.

3.8.3 Roller Formation-advection Model

A surface roller in a hydraulic jump is formed on the front face and the eddy is elliptical
with the major axis parallel to the front surface. As it is released to the downstream, the eddy
will become more circular in shape [279]. Mok and Ieong (2002) proposed that the roller
generation–advection frequency � can be estimated by [183]:

� = V1

L
(3.89)
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Figure 3.34 Illustration of the hydraulic jump

where V1 is the upstream supercritical flow velocity and L is the typical roller length and is
given by twice the horizontal projected length of the major axis of the elliptical roller:

L = 2Lrj

cos θ
(3.90)

where Lrj is the horizontal roller length between the jump toe and the end of the surface roller.
It can be found by the empirical relationship in Rouse et al. [224]. In this present study that the
Froude numbers are between 1 and 3, the ratio Lrj/y2 increases approximately linearly with
the Froude number:

Lrj

y2
≈ Fr − 1 (3.91)

The angle θ in Figure 3.34 may be estimated by the slope of the jump toe. Use Lj to denote
the horizontal distance between the jump toe and jump end [215, 216] and it can be found in
the results of Bradley and Peterka [32] or by using the following empirical relationship [46]:

Lj = 220y1 tanh
Fr − 1

22
(3.92)

3.8.4 Statistical Modeling of the Surface Fluctuation

Here, a simple linear single-degree-of-freedom system is used to characterize the surface
fluctuation dynamics:

ẍ + 2ζ�ẋ + �x = f (t) (3.93)
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where x is the vertical displacement of the surface fluctuation, and � and ζ are the natural
frequency and damping ratio of the oscillator, respectively. The input f on the right hand side
is modeled as zero-mean Gaussian white noise with spectral intensity Sf (ω) = Sf0. It is well
known that for given model parameters the response x is also a Gaussian process with a zero
mean, auto-correlation function [161, 249]:

Rx(τ) = πSf0

2ζω3 e−ζ�|τ|
[

cos (�dτ) + ζ√
1 − ζ2

sin (�d |τ|)
]

(3.94)

and spectral density function [161, 249]:

Sx(ω) = Sf0

(�2 − ω2)2 + (2ζω�)2 (3.95)

where �d = �
√

1 − ζ2 is the damped natural frequency of the oscillator.
Discrete data with a time step 
t are collected in the experiment. Let yn be the measured

surface fluctuation at time t = n
t. There is a difference between the measured response yn

and the actual response x(n
t) due to measurement noise and this is modeled here by a discrete
white noise process ε with zero mean and variance σ2

ε :

yn = x(n
t) + εn, n = 0, 1, . . . , N − 1 (3.96)

where ε has a spectral intensity

Sε(ω) = Sε0 = 
t

2π
σ2

ε (3.97)

By using the measurements y0, y1, . . . , yN−1, the spectral density estimator can be computed:

Sy,N (ωk) = 
t

2πN

∣∣∣∣
N−1∑
n=0

yn exp (−inωk
t)

∣∣∣∣
2

(3.98)

and can be computed efficiently by the MATLAB® function‘fft’ as shown in Section 3.3.1.2.
Let θ = [�, ζ, Sf0, Sε0]T denote the vector of the uncertain model parameters to be identi-

fied. The most probable values of the parameters and their associated uncertainty are updated
by the Bayesian spectral density approach.

3.8.5 Experimental Setup and Results

The laboratory experiment was conducted in a rectangular re-circulating channel tank, which
is 5.0 m long, 7.6 cm wide and 25 cm deep. The side walls are made of ‘Plexiglas’. Hydraulic
jumps on the horizontal floor were generated by regulating an upstream sluice gate and a fixed
downstream blockage at the end of the channel. An immersed resistance-type gauge, which
consists of two stainless-steel wires 1.5 mm in diameter and 12.5 mm apart, was set at the
location of the jump end. The sampling frequency was taken to be 50 Hz for all cases to
measure the surface fluctuation time histories. The total number of samples acquired in each
case was 327 68 (= 215), corresponding to approximately 655 s.

Experiments were performed for 23 values of the Froude number (from 1.38 to 3.02) and
there were 6 cases of undular jumps, 12 cases of weak jumps and 5 cases of oscillating jumps.
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For each experiment, the upstream flow rate was recorded to compute the upstream flow
speed and the corresponding Froude number. Then the gauge was placed at the location of the
jump end of each Froude number according to the Bradley–Peterka curve [32]. The upstream
water depth y1 was recorded and then the downstream water depth y2 can be estimated by
Equation (3.88).

The surface fluctuation time histories were transformed to the frequency domain according
to Equation (3.98). Figure 3.35 shows the spectra for three different Froude numbers and they
represent the three types of hydraulic jumps: the undular jump, weak jump and oscillating
jump. For the undular jumps with Froude number Fr = 1.38, there is no apparent frequency in
the spectrum and this happens generally to the other five cases of undular jumps with Froude
numbers: 1.43, 1.47, 1.52, 1.58 and 1.63. The surface roller is not apparent for undular jumps.
For the weak jump with Fr = 1.68, the spectral values are much larger than those in the undular
jumps. Although the values in low frequencies are still large, there is an apparent frequency
around 10 Hz. For the oscillating jump with Fr = 2.60, there is a clear peak at around 5 Hz in the
spectrum without strong components in the low-frequency range. Furthermore, the spectral
values are larger than the other two cases by an order of magnitude. However, the spectral
intensity of the measurement noise is so small that it can be neglected for identification.
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Figure 3.35 Measured spectra for different types of hydraulic jumps

Since there is no apparent frequency in the measurements of undular jumps, identification
was proceeded for the weak and oscillating jumps only and the results are summarized in
Table 3.7. The first column shows the Froude numbers. The second to the fourth columns show
the identified values of the natural frequencies, damping ratios and spectral intensities of the
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Table 3.7 Identification results with different Froude numbers

Froude number � ζ Sf0

1.68 10.38 (0.048) 0.032 (0.0008) 2.77 (0.104)
1.73 10.73 (0.047) 0.031 (0.0007) 2.24 (0.084)
1.79 11.94 (0.053) 0.030 (0.0007) 2.89 (0.107)
1.82 11.17 (0.102) 0.037 (0.0011) 1.53 (0.059)
1.89 10.05 (0.059) 0.038 (0.0011) 1.11 (0.051)
1.93 8.911 (0.071) 0.043 (0.0013) 1.20 (0.046)
1.98 8.195 (0.074) 0.049 (0.0015) 1.85 (0.067)
2.09 7.990 (0.041) 0.042 (0.0009) 2.17 (0.081)
2.20 6.641 (0.034) 0.051 (0.0012) 3.24 (0.108)
2.31 6.685 (0.031) 0.046 (0.0011) 3.83 (0.129)
2.40 5.357 (0.031) 0.058 (0.0014) 3.36 (0.112)
2.50 5.169 (0.023) 0.055 (0.0013) 4.39 (0.140)

2.60 5.004 (0.025) 0.060 (0.0015) 3.89 (0.124)
2.70 4.984 (0.032) 0.067 (0.0018) 4.02 (0.136)
2.80 4.824 (0.023) 0.061 (0.0015) 3.18 (0.098)
2.91 5.489 (0.063) 0.069 (0.0020) 2.36 (0.113)
3.02 4.557 (0.039) 0.084 (0.0026) 2.71 (0.093)

input. The numbers in parentheses are the standard deviations of the corresponding identified
values by the Bayesian spectral density approach. Figure 3.36 shows the identified parameters
versus the corresponding Froude numbers. The confidence intervals of plus and minus three
standard deviations are also shown in the figure. The dashed lines show the boundaries between
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Figure 3.36 Identified parameters with different Froude numbers
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weak jumps and oscillating jumps. It can be clearly seen that the surface roller frequency
decreases with an increasing Froude number. The confidence intervals confirm that the changes
are not simply due to statistical uncertainty only.

The surface roller frequency can also be estimated by another approach. From the results
of Rouse et al. (1959), the horizontal length Lrj of the surface roller can be estimated by
Equation (3.91) [224]. As the measurements of the volume flow rate and the upstream water
depth y1 are available, the upstream velocity and the Froude number can be readily obtained.
The apparent frequencies of different Froude numbers can then be estimated by the Mok–Ieong
formula in Equation (3.89) [183]. Figure 3.37 shows the comparison bewteen the frequencies
estimated by the Mok–Ieong formula and by the identification results with the measured spactra.
The crosses represent the values of the weak jumps and the circles represent the oscillating
jumps. The apparent frequencies estimated by the measurements are in general higher than the
values estimated by the Mok–Ieong formula for the weak jumps. In the case of weak jumps,
the values of Lrj obtained from Equation (3.91) are relatively small compared to the oscillating
jumps. As a result, the apparent frequency estimated by Equation (3.89) is more sensitive to
the interpolation error of Lrj . This is one of the main reasons for the discrepancies between
the theoretical and experimental frequencies for weak jumps. Nevertheless, the experimental
results are in general in good agreement with Equation (3.89).
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Figure 3.37 Comparison of the frequencies estimated by the Mok–Ieong formula and the data

On the other hand, the damping ratio increases with an increasing Froude number, confirm-
ing that hydraulic jumps with larger values of Froude number are more efficient in energy
dissipation. However, the spectral intensity of the excitation does not show an obvious trend
with the Froude number. According to Streeter and Wylie [256], the fractional head losses of
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hydraulic jump are in the ranges of 0–5%, 5%–15% and 15%–45% for the undular jumps,
weak jumps and oscillating jumps, respectively. From Table 3.7, the identified damping ratio
increases from 3.2% to 8.4% as the Froude number increases from 1.68 to 3.02 and this agrees
with the results in Streeter and Wylie [256] that the fractional head loss increases with a larger
value of the Froude number.

3.8.6 Concluding Remarks

The Bayesian spectral density approach was applied to update a simple hydraulic jump surface
roller model. The posterior PDF for the model parameters can be accurately approximated by
a multi-variate Gaussian distribution. This property provides an efficient way to quantify the
parametric uncertainty. The calculated mean and covariance matrix of this distribution offer
an estimate of the optimal values of the model parameters and the associated uncertainty. The
quantification of these uncertainties is useful to provide the confidence intervals of the model
parameters. It turns out that there is significant evidence for the periodic behavior of weak jumps
and oscillating jumps, but not the undular jumps. In the former cases, the frequency decreases
but the damping ratio increases with an increasing Froude number. This is consistent with
the previous study that oscillating jumps dissipate energy more efficiently than weak jumps.
However, a more accurate model is necessary for further understanding of the time-frequency
structure of hydraulic jumps.





4
Bayesian Time-domain Approach

Keywords: ambient vibration; Bayesian inference; best estimaton; conditional probability;
correlation function; modal analysis; modal identification; nonstationary response; seismic
response; structural health monitoring

4.1 Introduction

Chapter 3 presented the Bayesian spectral density approach for the parametric identification of
the multi-degree-of-freedom dynamical model using the measured response time history. The
methodology is applicable for linear models and can also be utilized for weakly nonlinear mod-
els by obtaining the mean spectrum with equivalent linearization or strongly nonlinear models
by obtaining the mean spectrum with simulations. The stationarity assumption in modal/model
identification for an ambient vibration survey is common but there are many cases where the
response measurements are better modeled as nonstationary, e.g., the structural response due
to a series of wind gusts or seismic responses. In the literature, there are very few approaches
which consider explicitly nonstationary response data, for example, [226, 229]. Meanwhile,
extension of the Bayesian spectral density approach for nonstationary response measurement
is difficult since construction of the likelihood function is nontrivial in the frequency domain.
Estimation of the time-dependent spectrum requires a number of data sets, which are associ-
ated with the same statistical time–frequency properties but this is impossible to achieve in
practice.

The Bayesian time-domain approach presented in this chapter addresses this problem of
parametric identification of linear dynamical models using a measured nonstationary response
time history. This method has an explicit treatment on the nonstationarity of the response
measurements and is based on an approximated probability density function (PDF) expansion
of the response measurements. It allows for the direct calculation of the updated PDF of the
model parameters. Therefore, the method provides not only the most probable values of the
model parameters but also their associated uncertainty using one set of response data only. It is
found that the updated PDF can be well approximated by an appropriately selected multi-variate
Gaussian distribution centered at the most probable values of the parameters if the problem is
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globally identifiable and the number of data points is large. Then, statistical moments, such as
variance, of the random variables can be computed efficiently.

In the next section, an exact formulation is presented with the stationary response measure-
ment of a linear single-degree-of-freedom system. However, it turns out to be computationally
prohibited since it requires computation of the matrix determinant and the solution of linear
simultaneous algebraic equations of huge dimensions. In Section 4.3, the problem is formu-
lated for the nonstationary response measurement of linear multi-degree-of-freedom systems.
Standard random vibration analysis for the nonstationary response of linear systems is also
reviewed. In Section 4.4, an approximated expansion of the likelihood function is introduced
and the Bayesian time-domain approach is built on this approximation to resolve the com-
putational difficulties. In Section 4.5, simulated data with a linear SDOF system is used to
verify the approximation in the methodology. Before concluding the method in Section 4.7,
Section 4.6 presents an application with the measurement of a 10-story building subjected to
nonstationary earthquake ground motion. The importance of considering explicitly the non-
stationarity of the response is discussed. In Section 4.8, the spectral density approach and
the time-domain approach are compared in terms of efficiency, accuracy and applicability.
Finally, extended readings of some recently developed Bayesian updating methods are briefly
introduced in Section 4.9.

4.2 Exact Bayesian Formulation and its Computational Difficulties

Consider a single-degree-of-freedom (SDOF) system with the equation of motion:

ẍ + 2ζ�ẋ + �2x = f (t) (4.1)

where � and ζ are the natural frequency and damping ratio of the oscillator, respectively. For
demonstration purpose only, stationary input and response are considered in this section. The
input f is modeled as a zero-mean stationary Gaussian white noise with spectral intensity:

Sf (ω) = Sf0 (4.2)

It is well known that the stationary response x is a zero-mean Gaussian random process with
the auto-correlation function:

Rx(τ) = πSf0

2ζ�3 e−ζ�|τ|
[

cos (�dτ) + ζ√
1 − ζ2

sin (�d |τ|)
]

(4.3)

and the power spectral density function:

Sx(ω) = Sf0

(�2 − ω2)2 + (2ζ�ω)2 (4.4)

where �d ≡ �
√

1 − ζ2 is the damped natural frequency of the oscillator [157, 161, 249].
Discrete data are sampled with a time step �t and yn are then used to denote the measured

response at time t = n�t. Due to measurement noise and modeling error, there is a difference
between the measured response yn and the model response x(n�t), referred to hereafter as
prediction error. It is assumed that the prediction error can be adequately represented by a
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discrete white noise process ε with zero mean and variance σ2
ε :

yn = x(n�t) + εn n = 1, 2, . . . , N (4.5)

so this process ε satisfies:

E[εnεn′ ] = σ2
ε δnn′ (4.6)

where δnn′ denotes the Kronecker delta, which is given by:

δnn′ =
{

1 if n = n′

0 if n /= n′ (4.7)

Furthermore, the stochastic response x and the prediction error ε are assumed statistically
independent.

Therefore, the set of measurements D include the data points {y1, y2, . . . , yN}. Define a
column vector Y:

Y = [y1, y2, . . . , yN ]T (4.8)

Since x and ε are Gaussian, the measured response y is also Gaussian. It follows that the
likelihood function for a given set of data D is given by:

p(D|θ, C) = (2π)−
N
2 |�(θ)|− 1

2 exp

[
−1

2
YT �(θ)−1Y

]
(4.9)

where C is the prescribed class of models governed by Equation (4.1) with the parameterization
θ = [�, ζ, Sf0, σε]T for the dynamical model to be identified. The notation |A| is used to denote
the determinant of a matrix A. The likelihood function p(D|θ, C) is an N-variate Gaussian
distribution of the measurement vector Y with zero mean and covariance matrix �(θ) where
the (n, n′) element �(n,n′)(θ) ≡ E[ynyn′ ] is given by:

�(n,n′)(θ) = Rx[(n′ − n)�t|θ] + σ2
ε δnn′ (4.10)

where Rx is the auto-correlation function given by Equation (4.3) for a given set of the model
parameter vector θ.

Herein, the identification of the model parameter vector θ, given some measured data D,
is concerned. Using the Bayes’ theorem, the updated PDF of the model parameter vector θ is
given by:

p(θ|D, C) = κ0p(θ|C)p(D|θ, C) (4.11)

where κ0 is the normalizing constant such that integrating the right hand side of Equation (4.11)
over the parameter space yields unity. The prior PDF p(θ|C) in Equation (4.11) reflects the
prior information of the parameters without using the data. The likelihood function p(D|θ, C)
is the dominant factor when the number of data points is large. It reflects the contribution of the
measured data D in establishing the updated (posterior) PDF of the parameters. The relative
plausibility between two values of θ does not depend on the normalizing constant κ0. It depends
only on the relative values of the prior PDF p(θ|C) and the relative values of p(D|θ, C). In
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order to search for the most probable model parameter vector θ, denoted by θ
, the product of
the prior PDF and the likelihood function p(θ|C)p(D|θ, C) is maximized.

However, for a large number of observed data points, repeated evaluations of the factor
p(D|θ, C) for different values of θ becomes computationally prohibitive. It is obvious from
Equation (4.9) that it requires the computation of the solution X of the algebraic equation
�(θ)X = Y and the determinant of the N × N matrix �(θ). This task is computationally very
expensive for large N even though the former can be done efficiently by pre-conditioners
[43, 49, 124]. Repeated evaluations of the likelihood function for thousands of times in the
optimization process is computationally prohibitive for large N. Therefore, the exact Bayesian
approach described above, based on direct use of the measured data D, becomes practically
infeasible. In the next section, the model updating problem will be formulated with a nonsta-
tionary response measurement. Standard random vibration analysis will be reviewed. Then,
an approximated approach is introduced and it overcomes the computational obstacles and
renders the problem practically feasible.

4.3 Random Vibration Analysis of Nonstationary Response

Consider a linear dynamical system with Nd degrees of freedom (DOFs) and its equation of
motion is given by:

Mẍ + Cẋ + Kx = T0F(t) (4.12)

where M, C and K are the mass, damping and stiffness matrices, respectively, T0 ∈ RNd×NF

is a force distributing matrix, and the input F is a zero-mean Gaussian nonstationary stochastic
process which is modeled by:

F(t) = A(t)g(t) (4.13)

where F(t) ∈ RNF , A is a scalar modulating function, and g is a Gaussian stationary stochastic
process with zero mean and spectral density matrix function Sg(ω) ∈ CNF ×NF . Then, the
auto-correlation function of the forcing process F is given by:

RF (t, t + τ) ≡ E
[
F(t)F(t + τ)T

] = A(t)A(t + τ)Rg(τ) (4.14)

where Rg is the auto-correlation matrix function for the stationary process g.
If the matrix M−1C can be diagonalized by the same set of eigenvectors as the matrix M−1K,

the damping model is said to be classical. Caughey and O’Kelly (1965) showed the following
necessary and sufficient condition [41]:

CM−1K = KM−1C (4.15)

In this case, it is obvious that (M−1C)(M−1K) = (M−1K)(M−1C) so the matrices M−1C and
M−1K share the same set of eigenvectors [189]. Since M, C and K are symmetric matrices,
M−1C and M−1K are diagonalizable with the same eigenvector matrix. As a result, Equa-
tion (4.12) can be decoupled by introducing the modal coordinates q = [q(1), q(2), . . . , q(Nd )]T :

x(t) = � · q(t) (4.16)
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where � ∈ RNd×Nd is the modal matrix comprised of Nd linearly independent eigenvec-
tors of M−1C or M−1K. These eigenvectors are referred to as the mode shapes φ(m),
m = 1, 2, . . . , Nd , of the dynamical model:

� =
[
φ(1), φ(2), . . . , φ(Nd )

]
(4.17)

and they are normalized in the following manner:

φ
(m)
lm

= 1, m = 1, 2, . . . , Nd (4.18)

where lm is an arbitrary measured DOF which is not a node of the mth mode. The reason for
not adopting mass normalization is that the mass matrix may be unknown in the identification
process.

Then, by pre-multiplying �−1M−1 to Equation (4.12), the following equation can be ob-
tained:

q̈ + �−1M−1C�q̇ + �−1M−1K�q = �−1M−1T0F(t) (4.19)

Since � is the matrix comprised of the eigenvectors of M−1C and M−1K, �−1M−1C� and
�−1M−1K� are diagonal with the eigenvalues of M−1C and M−1K on their diagonal entries.
Therefore, Equation (4.19) can be rewritten as Nd independent ordinary differential equations
of the modal coordinates:

q̈(m)(t) + 2ζ(m)�(m)q̇(m)(t) + �(m)2
q(m)(t) = A(t)f (m)(t), m = 1, 2, . . . , Nd (4.20)

where f(t) = [f (1)(t), f (2)(t), . . . , f (Nd )(t)]T is the modal forcing vector given by:

f(t) = (M�)−1T0g(t) (4.21)

The modal forcing f is a linear combination of the components of g so it is also a zero-mean
Gaussian vector process. It is stationary with the spectral density matrix function:

Sf (ω) = (M�)−1T0Sg(ω)TT
0 (M�)−T (4.22)

and the auto-correlation matrix function:

Rf (τ) =
∫ ∞

−∞
Sf (ω)eiωτdω (4.23)

It is well known that the model response x is a zero-mean Gaussian random process with a
correlation function between xl and xl′ [161]:

R(l,l′)
x (t, t + τ) =

Nm∑
m=1

Nm∑
m′=1

φ
(m)
l φ

(m′)
l′

×
∫ t+τ

0

∫ t

0
A(u)A(v)h(m)(t − u)h(m′)(t + τ − v)R(m,m′)

f (u − v)dudv

(4.24)
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where h(m) denotes the modal unit impulse response function for the mth mode. It is the modal
response of Equation (4.20) due to unit impulse input A(t)f (m)(t) = δ(t):

h(m)(t) =
⎧⎨
⎩

1
�

(m)
d

e−ζ�(m)t sin (�(m)
d t) if t ≥ 0

0 if t < 0
(4.25)

where �
(m)
d = �(m)

√
1 − ζ(m)2 is the damped natural frequency of the mth mode. Causality is

the reason for h(m)(t) = 0 when t < 0. Here, it is assumed that only Nm lower modes contribute
significantly to the model response.

The time-dependent power spectral density is given by the Fourier transform of the correla-
tion function [161]:

S(l,l′)
x (t, ω) = 1

2π

∫ ∞

−∞
R(l,l′)

x (t, t + τ)e−iωτdτ (4.26)

Assume that discrete data at times t = n�t, n = 1, 2, . . . , N, are available at No(≤ Nd)
measured DOFs. Also, due to measurement noise and modeling error, there is prediction error,
i.e., a difference between the measured response yn ∈ RNo and the model response at time
t = n�t corresponding to the measured degrees of freedom. The latter is given by Lox(n�t),
where Lo ∈ RNo×Nd is an observation matrix. In the case of measuring the displacement time
histories, this observation will be comprised of ‘zeros’ and ‘ones.’ The row and column numbers
of the ‘ones’ are the number of the measured channels and the corresponding measured degree
of freedom, respectively. Therefore, the measured response yn at time n�t can be expressed
as follows:

yn = Lox(n�t) + εn (4.27)

It is assumed that the prediction error can be adequately represented by a discrete zero-mean
Gaussian white noise ε with the following No × No covariance matrix:

E[εnε
T
n′ ] = �εδnn′ (4.28)

where δnn′ is the Kronecker delta given by Equation (4.7). Furthermore, the prediction error ε

and the stochastic response x are assumed statistically independent.
The measurement y is a zero-mean discrete Gaussian random process with correlation matrix

function Ry:

Ry(n, n′) = E[ynyT
n′ ]

= LoRx(n�t, n′�t)LT
0 + �εδnn′

(4.29)

where Rx denotes the correlation matrix function of the model response x and is given by
Equation (4.24).
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4.4 Bayesian Updating with Approximated PDF Expansion

Let θ denote the uncertain parameter vector for identification and it includes the following
parameters:

1. The structural parameters that determine the model matrices M, C, and K.
In the special case of modal updating, assume that only the lowest Nm modes contribute sig-
nificantly to the response and only the modal parameters of these modes are to be identified.
Then, the structural parameters are the modal frequencies �(m), modal damping ratios ζ(m),
and the elements of the first Nm mode shapes φ(m), except those elements which are equal
to unity for normalization purposes, m = 1, 2, . . . , Nm. Thus, there are a total number of
Nm(No + 1) unknown structural modal parameters.

2. The forcing parameters defining the spectral density matrix function Sg and the modulating
function A.
In the special case of modal identification, the first part of the forcing parameters are the
elements of the upper right triangular part (diagonal inclusive) of the Nm × Nm submatrix
of Sf0 of the modal forces (symmetry defines the lower triangular part).

3. The elements of the upper right triangular part (diagonal inclusive) of �ε (symmetry defines
the lower triangular part of this matrix) or the parameters to be used to determine this matrix.

Recall here that the scaling of each mode shape is chosen such that one of its components
corresponding to a measured DOF is equal to unity. However, such scaling is arbitrary and
therefore the mode shape vectors can be identified only up to a scaling constant. A different
mode shape normalization will cause all identified components of that mode shape to be scaled

by the same constant αm and at the same time the elements S
(m,m′)
f0 and S

(m′,m)
f0 will be scaled

by α−2
m if m = m′ and α−1

m if m /= m′.
Using the Bayes’ theorem, the updated PDF of the model parameters given some measured

response D is:

p(θ|D, C) = κ1p(θ|C)p(D|θ, C) (4.30)

where C is a prescribed class of models for the dynamical system with the prescribed parameter-
ization. κ1 is a normalizing constant such that integrating the right hand side of Equation (4.30)
over the parameter space yields unity. The factor p(θ|C) denotes the prior PDF of the parame-
ters and is based on previous knowledge or engineering judgement. In the case where no prior
information is available, it can be treated as a constant and absorbed into the normalizing con-
stant. The likelihood function p(D|θ, C) is the dominant factor on the right hand side to reflect
the contribution of the measured data in establishing the posterior distribution. The difficulty
here is to construct the likelihood p(D|θ, C) as the random components of the data points are
correlated, which is in contrast to the case in Chapter 2 with input–output data. By using the
Bayes’ theorem, the likelihood function can be expanded to a product of a conditional PDF
and a reduced-order joint PDF:

p(D|θ, C) = p(y1, y2, . . . , yN |θ, C)

= p(yN |y1, y2, . . . , yN−1, θ, C)p(y1, y2, . . . , yN−1|θ, C)
(4.31)
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Then, in the same manner, the reduced-order joint PDF p(y1, y2, . . . , yN−1|θ, C) can be further
expanded. By continuing this process, the likelihood function can be factorized as a product
of a reduced-order likelihood function and a number of conditional PDFs:

p(D|θ, C) = p(y1, y2, . . . , yNp |θ, C)
N∏

n=Np+1

p(yn|y1, y2, . . . , yn−1, θ, C) (4.32)

This expansion is exact but it does not resolve the computational difficulties encountered
in the exact formulation. This is because the computation of each of the conditional PDFs
p(yn|y1, y2, . . . , yn−1, θ, C) for large n requires similar computational effort as in the com-
putation of the likelihood function p(D|θ, C) in the direct exact formulation and the right
hand side of the expansion involves many such conditional PDFs. In order to overcome this
computational obstacle, the following approximation is introduced (n > Np) [290]:

p(yn|y1, y2, . . . , yn−1, θ, C) ≈ p(yn|yn−Np, yn−Np+1, . . . , yn−1, θ, C) (4.33)

so the likelihood function expansion in Equation (4.32) can be approximated by:

p(D|θ, C) ≈ p(y1, y2, . . . , yNp |θ, C)
N∏

n=Np+1

p(yn|yn−Np, yn−Np+1, . . . , yn−1, θ, C) (4.34)

In other words, the conditional PDFs depending on more than Np previous data points are
approximated by conditional PDFs depending on only the last Np data points. The sense of
this approximation is that data points belonging too far in the past do not have significant
information on the system response of the present point. Of course, one expects this to be
legitimate, if Np is so large that the correlation functions have decayed to negligible values.
However, it is found that a value for Np of the order of 2π/��t is sufficient, where � is
the fundamental frequency (in rad/s) of the system and �t is the sampling time step. In order
words, the value of Np is chosen to cover roughly one fundamental period of the system.
For example, if the sampling time step is 1/25 of the fundamental period of the system, i.e.,
�t = 2π/25�, a value of Np = 25 will be sufficient for the expansion to be accurate. In the
case of multi-degree-of-freedom systems (i.e., multi-mode systems), such a selected value of
Np covers more than one period of the higher modes so the approximation is even more accurate
for the higher modes. Although the fundamental frequency � is an unknown parameter, it can
be roughly estimated from the first peak of the response spectrum to obtain the value of Np

prior to the identification. The identification result is not sensitive to the selected value of Np

if it is sufficiently large.
This behavior can be explained as follows. Consider three random variables x, y and z and

assume that one is interested in the conditional probability density p(x|y, z) with p(z|y) > 0
for the prediction of x by y and z. By using the Bayes’ theorem, the following relationship can
be obtained:

p(x, z|y) = p(x|y, z)p(z|y) (4.35)

If x is independent of z given y, the PDF p(x, z|y) can be expanded as follows:

p(x, z|y) = p(x|y)p(z|y) (4.36)
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In this case, the condition PDF can be simplified as:

p(x|y, z) = p(x|y) (4.37)

Now, let x be dependent on z. If y and z are fully dependent (or negatively fully dependent), the
variables y and z follow a linear relationship: z = ay + b. Then, the above equation p(x|y, z) =
p(x|y) is still valid. If y and z are almost fully dependent (or almost negatively fully dependent),
this equation still holds approximately. The point here is that when considering conditional
probability densities, some of the conditioning information may be redundant/repeating and
can be omitted without significantly sacrificing the accuracy. This argument can be applied
to the case of oscillatory response measurements since measurements a half period apart
are negatively highly correlated. Furthermore, response measurements one period apart are
highly correlated. Using the recommended value of Np leads to significant reduction of the
computational demand with minor effects on the accuracy of the likelihood function expansion
only.

Example. Consider four Gaussian random variables x1, x2, x3 and x4 with zero mean and a
covariance matrix:

⎡
⎢⎢⎢⎣

1 −0.95 0.952 −0.953

−0.95 1 −0.95 0.952

0.952 −0.95 1 −0.95

−0.953 0.952 −0.95 1

⎤
⎥⎥⎥⎦ (4.38)

This example demonstrates the situation that x1, x2, x3 and x4 are the stochastic response of a
dynamical system and any two consecutive random variables xn and xn+1, n = 1, 2, 3, are a
half period apart. In order to predict x1 conditional on x2, the conditional mean and variance
can be computed by using Equations (C.23) and (C.24) in Appendix C:

E[x1|x2] = −0.95x2

σ2
x1|x2

= 1 − 0.952 = 0.0975

Similarly, x1 can be estimated with the measurement of x3:

E[x1|x3] = 0.952x3

σ2
x1|x3

= 1 − 0.954 ≈ 0.1426

or with the measurement of x4:

E[x1|x4] = −0.953x4

σ2
x1|x4

= 1 − 0.956 ≈ 0.2262

The prediction-error variance in all cases is significantly reduced from the unconditional vari-
ance of x1 (i.e., 1.0) because even the lowest correlation coefficient (between x1 and x4) is
−0.953 ≈ −0.8574, which is considered negatively highly correlated. Of course, it is expected
that using x2 yields a prediction with the smallest uncertainty.



170 Bayesian Methods for Structural Dynamics and Civil Engineering

Now, consider to predict x1 with the measurements of x2 and x3. Again, by using
Equations (C.23) and (C.24), the optimal predictor and its variance can be obtained:

E[x1|x2, x3] = [−0.95 0.952
]
[

1 −0.95

−0.95 1

]−1 [
x2

x3

]
= −0.95x2

σ2
x1|x2,x3

= 1 − [−0.95 0.952
]
[

1 −0.95

−0.95 1

]−1 [
−0.95

0.952

]
= 0.0975

Finally, the variable x1 can be predicted with all the other three variables and the optimal
predictor is:

E[x1|x2, x3, x4] = [−0.95 0.952 −0.953
]
⎡
⎢⎣

1 −0.95 0.952

−0.95 1 −0.95

0.952 −0.95 1

⎤
⎥⎦

−1 ⎡
⎢⎣

x2

x3

x4

⎤
⎥⎦

= −0.95x2

Furthermore, the associated variance is given by:

σ2
x1|x2,x3,x4

= 1 − [−0.95 0.952−0.953
]
⎡
⎢⎣

1 −0.95 0.952

−0.95 1 −0.95

0.952 −0.95 1

⎤
⎥⎦

−1 ⎡
⎢⎣

−0.95

0.952

−0.953

⎤
⎥⎦

= 0.0975

It is quite surprising that the inclusion of x3 and x4 in the conditioning information does not
reduce the prediction-error variance even though they are highly correlated with the target
variable x1. In this case, p(x1|x2, x3, x4) = p(x1|x2, x3) = p(x1|x2).

To account for the measurement noise, consider four Gaussian random variables y1, y2, y3
and y4 with zero mean and the covariance matrix:

⎡
⎢⎢⎢⎣

1.01 −0.95 0.952 −0.953

−0.95 1.01 −0.95 0.952

0.952 −0.95 1.01 −0.95

−0.953 0.952 −0.95 1.01

⎤
⎥⎥⎥⎦

Here, a value of 0.01 is added to the diagonal elements to represent a 10% rms measurement
noise (or 1% of variance). In this case, the optimal predictor and its associated variance are:

E[y1|y2] = −0.95

1.01
y2 ≈ −0.9406y2

σ2
y1|y2

= 1.01 − 0.952

1.01
≈ 0.1164
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Similarly, y1 can be predicted by the measurement of y3:

E[y1|y3] = 0.952

1.01
y3 ≈ 0.8936y3

σ2
y1|y3

= 1.01 − 0.954

1.01
≈ 0.2036

or by the measurement of y4:

E[y1|y4] = −0.953

1.01
y4 ≈ −0.8489y4

σ2
y1|y4

= 1.01 − 0.956

1.01
≈ 0.2822

The prediction-error variances are larger than the previous cases without measurement noise
but the conditioning information is still capable to reduce significantly the prediction-error
variance since the correlation among these random variables is strong. Now, consider to predict
y1 with the measurements of y2 and y3:

E[y1|y2, y3] = [−0.95 0.952
] [

1.01 −0.95

−0.95 1.01

]−1 [
y2

y3

]
= −0.8684y2 + 0.0767y3

σ2
y1|y2,y3

= 1 − [−0.95 0.952
] [

1.01 −0.95

−0.95 1.01

]−1 [
−0.95

0.952

]
= 0.1057

Finally, the variable y1 can be predicted with all the other three variables:

E[y1|y2, y3, y4] = [−0.95 0.952 −0.953
]
⎡
⎢⎣

1.01 −0.95 0.952

−0.95 1.01 −0.95

0.952 −0.95 1.01

⎤
⎥⎦

−1 ⎡
⎢⎣

y2

y3

y4

⎤
⎥⎦

= −0.8679y2 + 0.0713y3 − 0.0063y4

and the prediction-error variance is given by:

σ2
y1|y2,y3,y4

= 1 − [−0.950.952 −0.953
]
⎡
⎢⎣

1.01 −0.95 0.952

−0.95 1.01 −0.95

0.952 −0.95 1.01

⎤
⎥⎦

−1 ⎡
⎢⎣

−0.95

0.952

−0.953

⎤
⎥⎦

= 0.1057

The additional measurement of y3 improves only slightly the prediction for y1 but the ad-
ditional measurement of y4 has virtually no effect on the prediction. This example is useful
to demonstrate the approximation used in the Bayesian time-domain approach. The random
variable y1 is predicted by the measurements of y2, y3 and y4, which are 0.5, 1 and 1.5 periods
apart from y1, respectively. It turns out that including the data points within one period is
sufficient. Furthermore, in a usual situation, the sampling time step is much less than half of
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a fundamental period so there are a number of data points in one period. The points more
than one period apart will become even more redundant conditioning information. This will
be further discussed in Section 4.5.

4.4.1 Reduced-order Likelihood Function

Use the vector Yn,n′ to denote the zero-mean random vector comprised of the response mea-
surements from time n�t to n′�t (n ≤ n′) in a time-descending order:

Yn,n′ = [yT
n′ , yT

n′−1, . . . , yT
n ]T , n ≤ n′ (4.39)

Then, the joint PDF p(y1, y2, . . . , yNp |θ, C) follows an NoNp-variate Gaussian distribution
with zero mean and covariance matrix �Y1,Np

:

�Y1,Np
= E[Y1,NpYT

1,Np
] =

⎡
⎢⎢⎣

�Np,Np sym
...

. . .

�1,Np · · ·�1,1

⎤
⎥⎥⎦ (4.40)

where the submatrix �n,n′ has the dimension No × No. Based on Equation (4.29), the matrix
�n,n′ is given by:

�n,n′ = E
[
ynyT

n′
] = LoRx(n�t, n′�t)LT

o + �εδnn′ (4.41)

where δnn′ is the Kronecker Delta, Rx denotes the auto-correlation matrix function of the
model response x, given by Equation (4.24), and �ε is the noise covariance matrix defined
in Equation (4.28). Since the random vectors y1, y2, . . . , yNp are jointly Gaussian with zero
mean, the reduced-order likelihood function p(y1, y2, . . . , yNp |θ, C) is given by:

p(y1, y2, . . . , yNp |θ, C) = (2π)−
NoNp

2 |�Y1,Np
|− 1

2 exp

(
−1

2
YT

1,Np
�−1

Y1,Np
Y1,Np

)
(4.42)

To compute this likelihood function, it involves only the solution of the linear algebraic equation
�Y1,Np

X = Y1,Np and the determinant of the matrix �Y1,Np
which is NoNp × NoNp only.

4.4.2 Conditional PDFs

In this section, the general expression is given for the conditional probability densities in-
volving Np previous points p(yn|θ; yn−Np, yn−Np+1, . . . , yn−1, C) in Equation (4.34), with
n > Np ≥ 1. First, the random vector Yn−Np,n has the zero mean and covariance matrix
�Yn−Np,n :

�Yn−Np,n = E[Yn−Np,nYT
n−Np,n] =

⎡
⎢⎢⎣

�n,n sym
...

. . .

�n−Np,n · · · �n−Np,n−Np

⎤
⎥⎥⎦ (4.43)
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where the submatrix �n,n′ is given by Equation (4.41). Then, this matrix is partitioned as
follows:

�Yn−Np,n =
[
�11,n �12,n

�T
12,n �22,n

]
(4.44)

where the matrices �11,n, �12,n and �22,n have dimensions No × No, No × NoNp and NoNp ×
NoNp, respectively. �11,n and �22,n are the unconditional covariance matrices of the prediction
target variables and the conditioning variables, and the matrix �12,n quantifies their correlation.

Since the measured response has zero mean, the optimal estimator ŷn of yn conditional on
Yn−Np,n−1 is given by (refer to Appendix C or Brockwell and Davis [35] for the proof):

ŷn ≡ E[yn|yn−Np, yn−Np+1, . . . , yn−1, θ, C] = �12,n�
−1
22,nYn−Np,n−1 (4.45)

and the covariance matrix �e,n of the prediction error en = yn − ŷn is given by:

�e,n ≡ E

[
eneT

n

∣∣∣∣yn−Np, yn−Np+1, . . . , yn−1, θ, C
]

= �11,n − �12,n�
−1
22,n�

T
12,n

(4.46)

Therefore, the conditional probability density p(yn|yn−Np, yn−Np+1, . . . , yn−1, θ, C) follows
an No-variate Gaussian distribution with mean ŷn and covariance matrix �e,n:

p(yn|yn−Np, yn−Np+1, . . . , yn−1, θ, C)

= (2π)−
No
2 |�e,n|− 1

2 exp

[
−1

2
(yn − ŷn)T �−1

e,n(yn − ŷn)

] (4.47)

Therefore, the reduced-order likelihood function and the conditional PDFs in the approximated
expansion are available and the procedure can be summarized as follows:

1. Use Equation (4.30) with the likelihood function p(D|θ, C) being computed through the
approximation in Equation (4.34).

2. The reduced-order likelihood function p(y1, y2, . . . , yNp |θ, C) can be calculated using
Equation (4.42) along with Equation (4.40) and (4.41).

3. Each of the conditional probability densities in Equation (4.34) can be calculated by Equa-
tion (4.47) along with Equation (4.43)–(4.46).

The most probable parameter vector θ
 is obtained by minimizing the objective function
which is the negative logarithm of the posterior PDF (without including the terms that do not
depend on θ):

J(θ) = − ln p(θ|C) + 1

2
ln

∣∣∣�Y1,Np

∣∣∣ + 1

2
YT

1,Np
�−1

Y1,Np
Y1,Np

+ 1

2

N∑
n=Np+1

[
ln |�e,n| + (yn − ŷn)T �−1

e,n(yn − ŷn)

] (4.48)
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The reason for minimizing the objective function J(θ) instead of maximizing the posterior
PDF directly is that the former has a better computational condition. It is found that the
updated PDF of the parameter vector θ can be well approximated by a Gaussian distribution
G(θ; θ
,H(θ
)−1) with mean θ
 and covariance matrix H(θ
)−1, where H(θ
) denotes the
Hessian of the objective function J(θ) calculated at θ = θ
.

In the special case of stationary response, the matrices �e,n = �e and �12,n�
−1
22,n = �12�

−1
22

required in the computation of the optimal estimator ŷn do not depend on the time step n.
Therefore, the objective function in Equation (4.48) can be simplified as follows:

J(θ) = − ln p(θ|C) + 1

2
ln

∣∣∣�Y1,Np

∣∣∣ + 1

2
YT

1,Np
�−1

Y1,Np
Y1,Np + N − Np

2
ln |�e| +

+ 1

2

N∑
n=Np+1

(yn − ŷn)T �−1
e (yn − ŷn)

(4.49)

In this case, it requires only the computation of the inverse and determinant of the matrices
�Y1,Np

(= �22) and �e, which are NoNp × NoNp, and No × No, respectively. These sizes are
much smaller than the NNo × NNo matrix �Y1,N

in the direct formulation.
Although the above formulation is presented for displacement time histories, it can be

modified easily for velocity or acceleration measurements by using the corresponding modal
impulse response functions for velocity or acceleration in Equation (4.24). Of course, the case
of relative acceleration with white noise excitation is not realistic since the response variance is
infinity. However, absolute acceleration measurements can be considered for ground excitation
or relative acceleration measurements with non-white excitation.

If the right hand side of Equation (4.13) is replaced by
∑Nr

r=1Ar(t|θA)gr(t), the Bayesian
time-domain methodology is applicable for excitations having different modulating functions,
e.g., ambient vibrations with a series of wind gusts.

4.5 Numerical Verification

This example considers the identification of a single-degree-of-freedom system with a
simulated noisy stationary displacement measurement. The actual parameters in θ̃ =
[�̃, ζ̃, S̃f0, σ̃ε]T for data generation are �̃ = 5 rad/s, ζ̃ = 0.01, S̃f0 = 10 cm2 s−3 and
σ̃ε = 0.3545 cm. The chosen value of σ̃ε corresponds to a 10% prediction-error level, i.e.,
the rms of the noise is 10% of the rms of the noise-free response. The sampling time step is
�t = 0.05 s, and the total time interval is T = 200 s, i.e., N = 4000. However, the system
response was generated with a finer time step of 0.005 s to simulate the realistic situation
that the actual signal has a larger range of frequency content than that the measurement can
detect. Furthermore, the simulation starts with a zero initial condition for a total simulation
interval of 210 s and the measurement is taken by ignoring the first 10 s in order to obtain a
stationary response. The non-informative prior distribution p(θ|C) is utilized so the parameters
are inferred solely by the measurements.

Figure 4.1 validates the approximation in Equation (4.34). The top subplot shows the
auto-correlation function Rx(n�t|θ̃) with the actual parameters. The optimal predictor ŷ2001,
at the 2001st time step, and the corresponding standard deviation σε are calculated from
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Figure 4.1 Auto-correlation function, predicted response and standard deviation of the prediction error

Equations (4.45) and (4.46). They are shown in the middle and bottom subplots, respectively,
as a function of the number of previous points Np used for the prediction. For values of Np

beyond approximately 15 (corresponding to slightly over half of a period of the oscillator), the
optimal predictor of the response and its associated uncertainty stabilizes. This implies that
increasing the value of Np beyond Np = 15 in Equation (4.34) will not further improve the
quality of the identification results. Thus, it is conservative to suggest that Np is chosen to
contain approximately one period of the oscillator. It is worth noting that the value of Np at
which stabilization occurs is rather insensitive to the prediction error level (10% in this case).
If a larger value of Np is utilized, the incremental improvement in the identification results
will be insignificant but the computational effort will increase rapidly. The low value of Np at
which the values of ŷ2001 and σε stabilize is rather surprising, given that the auto-correlation
function is far from being decayed to negligible values but this was explained in Section 4.4.
The computational efficiency of the Bayesian time-domain is built on the appreciation of this
low value of Np.

Table 4.1 refers to the identification results using a single set of displacement measurements
D. It shows the optimal values in θ
 = [�
, ζ
, S


f0, σε

]T , the calculated standard deviations

σ�, σζ , σSf0 and σσε , the coefficient of variation (COV) for each parameter and the normalized
distance for each parameter. This distance represents the absolute value of the difference
between the optimal and actual value of the parameter, normalized by the corresponding
calculated standard deviation. Here, the value Np = 25 (corresponding to roughly one period
of the oscillator) was used in Equation (4.34). Repeating the identification with Np = 50 yields
identical results.

Figure 4.2 shows the contours of the marginal PDF of the natural frequency � and the
damping ratio ζ. The two elliptical contours enclose the region with probability 0.5 and 0.9,
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Table 4.1 Identification results using one set of response data

Parameter Actual θ̃ Optimal θ
 S.D. σ COV |θ̃ − θ
|/σ
� 5.0000 4.9840 0.0168 0.003 0.95
ζ 0.0100 0.0113 0.0033 0.327 0.41
Sf0 10.000 10.641 0.6256 0.063 1.03
σε 0.3545 0.3433 0.0045 0.013 2.51

respectively. The estimates of these two parameters can be treated as independent since the
ellipses have horizontal major axes. Figure 4.3 shows the contours of the marginal PDF of the
damping ratio ζ and the spectral intensity of the excitation Sf0. In contrast to the previous case,
the estimates of these two parameters are highly correlated so the elliptical contours are rotated
to have inclined major axes. Increasing the damping ratio and the spectral intensity with the
same factor yields similar auto-correlation functions (only the damped natural frequency will
be affected slightly) and hence a similar probability density given the data.
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Figure 4.2 Contours of the marginal PDF of � and ζ

Figure 4.4 shows the conditional PDF of the natural frequency � and the damping ratio ζ

with the spectral intensity and the prediction-error variance fixed at their optimal values. The
conditional PDFs by the Bayesian time-domain approach and the Gaussian approximation are
plotted with solid lines and dashed lines, respectively. The two groups of curves are on top on
each other, indicating that the Gaussian approximation is accurate when the number of data
points is sufficiently large. This can be used to represent the posterior PDF, e.g., for statistical
moments computation.
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Another case is investigated with a very short period of measurement, namely T = 5 s, so
it contains less than four fundamental periods of the oscillator. The Bayesian time-domain
method is used for the identification and Figure 4.5 shows the conditional PDF of � and ζ with
all other parameters fixed at their optimal values. The solid lines show the conditional posterior
PDF obtained by the Bayesian method and the dashed lines show the Gaussian approximation.
It is clear that the posterior PDF is non-Gaussian. This confirms that the Bayesian time-domain
approach is capable to offer the correct inference without assuming the type of the posterior
PDF. In the case of a non-Gaussian posterior PDF, statistical moments, such as the variances
of the estimates, can be computed by direct Monte Carlo simulation. The results are shown
in Table 4.2 in the same fashion as Table 4.1. The computed uncertainty obtained here is
reasonable by judging the normalized distance of the estimates.
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Figure 4.5 Conditional PDFs of � and ζ for T = 5 s

Table 4.2 Identification results using one set of response data with T = 5 s

Parameter Actual θ̃ Optimal θ
 S.D. σ COV |θ̃ − θ
|/σ
� 5.0000 4.7544 0.2599 0.052 0.94
ζ 0.0100 0.0708 0.0460 4.602 1.32
Sf0 10.000 14.078 5.0632 0.506 0.81
σε 0.3545 0.4078 0.0329 0.093 1.62

To confirm the convergence of the Bayesian time-domain method, a response measurement
of T = 10 000 s is generated. Then, the time-domain method is applied for identification
with different duration of the measurement: T = 200, 210, 220, . . . , 10 000 s. The identified
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natural frequency and damping ratio are shown with solid lines in Figure 4.6. Furthermore,
the dashed lines show the optimal plus and minus three standard deviations for different
durations of measurement. In other words, the intervals between the dashed lines are the
±3σ confidence intervals, including approximately a probability of 99.7%. It is not surprising
that the uncertainty of the parameter estimates decreases with increasing durations of the
measurement. Furthermore, the identified parameters are converging to the actual values when
the measured duration increases.
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Figure 4.6 Identified natural frequency and damping ratio with different durations of measurement

4.6 Application to Model Updating with Unmeasured Earthquake
Ground Motion

4.6.1 Transient Response of a Linear Oscillator

This example considers the identification of a single-degree-of-freedom (SDOF) system with
the simulated noisy transient displacement measurement shown in Figure 4.7. Here, the mod-
ulating function A in Equation (4.20) is taken as the Heaviside unit step function, and the input
f is zero-mean stationary Gaussian white noise with spectral intensity Sf0. The actual param-
eters in θ̃ = [�̃, ζ̃, S̃f0, σ̃ε]T used to generate the simulated data are �̃ = 5.0 rad/s, ζ̃ = 0.01,
S̃f0 = 10 cm2s−3 and σ̃ε = 0.2285 cm. The chosen value of σ̃ε corresponds to a 10% rms
prediction-error level, i.e., the noise is 10% of the rms of the noise-free response. The time
step used to generate the data is 0.005s. However, a much larger sampling time step was cho-
sen (�t = 0.05s) and the total time interval is T = 50s, so that the number of data points is
N = 1000.
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Figure 4.7 Measured time history of the transient response

Table 4.3 refers to the identification results using a single set of displacement measurements
D. It shows the most probable values of the parameters, the calculated standard deviations σ�,
σζ , σSf0 and σσε , the coefficient of variation for each parameter and the normalized distance for
each parameter, defined in the same way as in the previous example. Here, the value Np = 25
(corresponding to approximately one period of the oscillator) was used in Equation (4.34).
Repeating the identification with a value of Np = 50 yields identical results, verifying that
using Np = 2π/��t is sufficient.

Table 4.3 Identification results for one set of data

Parameter Actual θ̃ Optimal θ
 S.D. σ COV |θ̃ − θ
|/σ
� 5.0000 5.0065 0.0513 0.010 0.13
ζ 0.0100 0.0237 0.0105 1.051 1.31
Sf0 10.000 10.712 1.1110 1.111 0.64
σε 0.2285 0.2188 0.0058 0.026 1.65

Figure 4.8 shows contours in the (�, ζ) plane of the marginal updated PDF p(�, ζ|D, C)
calculated for the set of simulated data used for Table 4.3. The estimates of � and ζ can be
considered uncorrelated since the major axes of the ellipses are horizontal. Figure 4.9 shows
the contours in the (ζ, Sf0) plane of the marginal updated PDF p(ζ, Sf0|D, C). The estimates
of the damping ratio and the spectral intensity are considered highly correlated. This is in
contrast to the case of � and ζ. The Gaussian approximation for the updated PDF can be
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Figure 4.8 Contours of the marginal updated joint PDF of the natural frequency and damping ratio
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verified by examining the conditional PDFs. Figure 4.10 shows the conditional PDFs of the
natural frequency and the damping ratios: p(�|D, ζ
, S


f0, σ


ε , C) and p(ζ|D, �
, S


f0, σ


ε , C).

The solid lines are obtained by using the Bayesian time-domain approach without assuming
the type of posterior distributions and the dashed lines are obtained by using the Gaussian
approximation. It can be seen that the two sets of curves are on top of each other, implying
that the Gaussian approximation is accurate.
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Figure 4.10 Conditional PDFs of the natural frequency and damping ratio

4.6.2 Building Subjected to Nonstationary Ground Excitation

This example uses the simulated response data from the 10-story shear building shown in
Figure 4.11. This building has a uniformly distributed floor mass and interstory stiffness over
its height and the stiffness to mass ratio is chosen to be 4637 s−2 so that the first four modal
frequencies are 1.62 Hz, 4.82 Hz, 7.92 Hz and 10.84 Hz. The damping ratios are 2% for
all modes. Displacements at the fourth and top floors were measured over a time interval of
T = 40 s, with a sampling time interval �t = 0.02 s. Therefore, the total number of measured
time steps is N = 2000 and corresponds to approximately 65 fundamental periods of the
building. Note that a much smaller time step (0.002 s) was used for the data simulation so that
the signal contains a frequency content higher than the Nyquist frequency in order to simulate
a realistic situation.

The structure is subjected to base acceleration given by stationary white noise with spectral
intensity Sg̈0 = 0.25 m2s−3 modulated by:

A(t) = A0te
1−A0tU(t) (4.50)
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where U(.) denotes the Heaviside unit step function. This modulating function has its maximum
max

t
A(t) = 1 at time t = 1/A0 and the value of A0 is taken to be 0.1s−1. The forcing distribut-

ing matrix in Equation (4.12) for the ground motion is given by T0 = M[−1, −1, . . . , −1]T .
The measurement noise for the response is taken to be 10%, i.e., the rms of the measurement
noise for a particular channel of measurement is equal to 10% of the rms of the noise-free re-
sponse at the corresponding DOF. Modal updating using the Bayesian time-domain approach
is carried out for the lowest three modes of the structure. The number of previous points used
for the conditional PDF is Np = 30 and corresponds to using previous data points roughly over
one fundamental period as the conditioning information at each time step in Equation (4.34).

Figure 4.11 Ten-story shear building subjected to earthquake ground motion

Figure 4.12 shows the displacement time histories of the fourth and top floor. The struc-
ture was on a calm environment before the earthquake arrived. Then, it was excited and the
maximum response was achieved approximately at the 8th second. The excitation level and
hence the response dropped gradually after the 10th second. Beating was also observed in the
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Figure 4.12 Measurements on the fourth and top floor

measurement. Figure 4.13 shows the corresponding Fourier amplitude spectrum. It is worth
noting that the peak of the third mode at 7.92 Hz does not appear in the spectrum of the 4th
floor and it is a challenging task to identify this mode. Table 4.4 shows the identification results
for three modes. The second column corresponds to the actual values used for generation of
the simulated measurement, the third and fourth columns correspond to the identified optimal
parameters and the corresponding standard deviations, respectively, the fifth column lists the
coefficients of variation for the parameters, and the last column shows the normalized distance
described previously. The first group of rows in the table corresponds to modal frequencies,
followed by the modal damping ratios, the ratios of the mode shape components between the
fourth and the top floors, the elements of the modal forcing spectral matrix Sf0, the elements of
the prediction-error covariance matrix �ε and finally the amplitude of the modulating function
A0. In this case of ground excitation, the off-diagonal entities of the spectral intensity matrix
are given by:

S
(m,m′)
f0 =

√
S

(m,m)
f0 S

(m′,m′)
f0 , m, m′ = 1, 2, . . . , Nm (4.51)

so only the diagonal elements of Sf0 have to be identified. The mode shapes are normalized
so that the mode shape components at the top floor are equal to unity for each of the modes
considered.

As observed previously in the examples for the Bayesian spectral density approach, the
coefficients of variation for the frequencies in all cases are much smaller than those of the
damping ratios, indicating that frequencies are identified much better than damping ratios. An
additional result observed, but not tabulated here, is that the modal damping ratios exhibit
significant correlation with the corresponding modal forcing spectral intensities.
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Figure 4.13 Response spectra of the measurements

Table 4.4 Identification results for the 10-story shear building

Parameter Actual θ̃ Optimal θ
 S.D. σ COV |θ̃ − θ
|/σ
�(1) 1.6198 1.6108 0.0141 0.009 0.64
�(2) 4.8232 4.8471 0.0261 0.005 0.91
�(3) 7.9189 7.8647 0.0760 0.010 0.71

ζ(1) 0.0200 0.0261 0.0076 0.382 0.80
ζ(2) 0.0200 0.0212 0.0030 0.152 0.40
ζ(3) 0.0200 0.0146 0.0086 0.432 0.62

φ
(1)
10 /φ

(1)
4 1.7702 1.7638 0.0063 0.004 1.03

φ
(2)
10 /φ

(2)
4 −1.0000 −0.9220 0.0598 0.060 1.30

φ
(3)
10 /φ

(3)
4 6.2457 10.3763 3.8341 0.614 1.08

S
(1,1)
f0 0.1281 0.1268 0.0114 0.089 0.12

S
(2,2)
f0 0.0414 0.0399 0.0051 0.122 0.29

S
(3,3)
f0 0.0003 0.0002 0.0001 0.177 3.02

σε1 (fourth floor) 0.0052 0.0053 0.0001 0.019 1.14
σε2 (top floor) 0.0091 0.0093 0.0002 0.018 1.06

A0 0.1000 0.0992 0.0032 0.032 0.24
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Figure 4.14 Contours of the marginal updated joint PDF of the first two modal frequencies

Figure 4.14 shows the contours in the (�(1), �(2)) plane of the marginal updated PDF of �(1)

and �(2). The actual parameters are at reasonable distances, measured in terms of the estimated
standard deviations, from the identified optimal parameters. This verifies that the quantified
uncertainty is reasonable. Figure 4.15 are typical plots showing comparisons between the
conditional PDFs of�(1) and�(2) (keeping all the other parameters fixed at their optimal values)
by the Bayesian time-domain method (solid lines) and the Gaussian approximation described
at the end of Section 4.4 (dashed lines). It can be seen that the Gaussian approximation is very
accurate as the two groups of lines are overlapping. Note that the Gaussian approximation is
not an assumption of the method but the consequence of a large number of data points.

The same set of data is also analyzed by assuming a stationary response but the identification
process is not converging for the third mode. This is not surprising by observing Figure 4.13,
which shows no peak of the third mode of the building in its Fourier amplitude spectrum.
Furthermore, the model parameters of the other modes are also biased. Therefore, consideration
of the nonstationarity of the response is important when there is obvious evidence for the
response to exhibit nonstationary behavior [285].

4.7 Concluding Remarks

In this chapter, the Bayesian time-domain approach was introduced for identification of the
model parameters and stochastic excitation parameters of linear multi-degree-of-freedom sys-
tems using noisy stationary or nonstationary response measurements. The direct exact formu-
lation was presented but it turned out to be computationally prohibited for a large number of
data points. Then, an approximated likelihood function expansion was proposed to resolve this
obstacle. For a globally identifiable case with a large number of data points, the updated PDF
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Figure 4.15 Conditional PDFs of the lower two modal frequencies

of the model parameters can be accurately approximated by a multi-variate Gaussian distribu-
tion. Note that this is not an assumption of the method but the consequence of the central limit
theorem. The mean and covariance matrix of the updated distribution offer an estimate of the
most probable values of the parameters and their associated uncertainties. Quantification of the
uncertainty in the identified model parameters is useful for post-processing, such as damage
detection or reliability analysis.

The presented methodology simultaneously utilizes response histories at all measured de-
grees of freedom, although only one observed degree of freedom is necessary to identify the
modal frequencies and damping ratios. Measurement noise is considered explicitly. Compu-
tation of the uncertainty does not require parametric identification from a number of different
data sets and then calculating the statistics of these estimates. Instead, it follows directly from
the methodology applied to a single set of measurements. Finally, the Bayesian time-domain
methodology is expected to lead to improved model identification using ambient vibration data
where nonstationarity is evident.

4.8 Comparison of Spectral Density Approach and Time-domain
Approach

Chapter 3 and Chapter 4 presented the Bayesian spectral density approach and Bayesian time-
domain approach. The comparison can be summarized as follows:

1. Computational efficiency
The Bayesian spectral density approach, which is a frequency-domain method, transforms
the response time history to the spectral density estimator by discrete Fourier transform.
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The spectral density estimators at different frequencies possess tractable properties so that
they follow independent Wishart distributions in a certain frequency band, regardless of the
distribution of the signal in the time domain. The method is efficient in the sense that most
of the information from the data for identification of the model parameters, especially those
related to the frequency structure, concentrates in a very limited bandwidth around the peaks
in the spectrum. Therefore, the number of frequencies involved in the computation of the
posterior PDF is significantly smaller than the total number of frequencies in the spectrum,
i.e., INT(N/2)+1. However, computation of the inverse and determinant of the matrices
E[Sy,N (ωk)] ∈ CNo×No , k ∈ K, is required for each frequency included in establishing the
likelihood function. For the case of a large number of observed degrees of freedom No, this
will considerably slow down the methodology.

The Bayesian time-domain approach utilizes the Bayes’ theorem repeatedly to factorize
the likelihood function into the product of a joint PDF and conditional PDFs:

p(D|θ, C) ≈ p(y1, y2, . . . , yNp |θ, C)
N∏

n=Np+1

p(yn|θ; yn−Np, yn−Np+1, . . . , yn−1, C)

(4.52)
This approximation resolves the computational difficulty encountered in the direct exact
formulation that requires repeated computations of the solution of linear simultaneous al-
gebraic equations and determinants of the matrices with huge dimensions. The efficiency in
the approximated expansion is gained by the appreciation that the conditioning information
can be truncated within one period of the system only. For linear systems, the expressions
for the reduced-order likelihood function p(y1, y2, . . . , yNp |θ, C) and the conditional PDFs
p(yn|θ; yn−Np, yn−Np+1, . . . , yn−1, C) are available since they are Gaussian and the corre-
lation functions are known in closed forms regardless of the stationarity of the response. For
stationary response, the method is very efficient in the sense that evaluation of all the con-
ditional PDFs p(yn|θ; yn−Np, yn−Np+1, . . . , yn−1, C) requires the inverse and determinant
of two relatively small matrices only.

Even though the spectral density approach requires computation of the inverse and de-
terminant of a number of matrices, the size of these matrices is only No × No. They are
significantly smaller than the NoNp × NoNp matrix �Y1,Np

(= �22) required in the time-
domain approach. Comparison of the computational efficiency between the two meth-
ods depends on the number of the elements in the frequency index set and the num-
ber of data points in a fundamental period. The ratio of the computations required by
the Bayesian spectral density approach and the Bayesian time-domain approach can be
approximated by:

CBSDA

CBTDA

≈ NωNo

N3
p

(4.53)

where Nω is the number of points in the frequency index set in the Bayesian spectral density
approach, No is the number of observed degrees of freedom and Np is the number of previous
time points to be included in the conditional PDF for the Bayesian time-domain approach.
In a typical situation, the Bayesian spectral density approach is more efficient. For example,
if No = 10, Nω = 1000, and Np = 50, then CBSDA/CBTDA ≈ 2/25.
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2. Accuracy
The Bayesian spectral density approach approximates the spectral density matrix estimators
as Wishart distributed random matrices. This is the consequence of the special structure of
the covariance matrix of the real and imaginary parts of the discrete Fourier transforms in
Equation (3.53) [295]. Another approximation is made on the independency of the spectral
density matrix estimators at different frequencies. These two approximations were verified
to be accurate at the frequencies around the peaks of the spectrum. The spectral density
estimators in the frequency range with small spectral values will become dependent since
aliasing and leakage effects have a greater impact on their values. Therefore, the likelihood
function is constructed to include the spectral density estimators in a limited bandwidth
only. In particular, the loss of information due to the exclusion of some of the frequencies
affects the estimation of the prediction-error variance but not the parameters that govern
the time-frequency structure of the response, e.g., the modal frequencies or stiffness of a
structure.

The only approximation made in the Bayesian time-domain approach is that the system
response at a particular time step estimated by its entire history is essentially the same
as conditioning on a significantly smaller number of previous time steps. In practice, the
time-domain approach provides virtually an exact solution in the sense that the Bayesian
approach utilizes the complete information inherited in the measurement. Therefore, the
Bayesian time-domain approach provides more accurate statistical inference of the model
parameters with the information in the data.

3. Applicability/Robustness
The spectral density estimator is Wishart distributed regardless of the distribution of the orig-
inal time-domain signal. Therefore, the expressions for the likelihood function in Chapter 3
are valid even for nonlinear systems. The only challenge is on the computation of the mean
spectrum but this may be accommodated by simulations. However, the Bayesian spectral
density approach is not applicable for nonstationary response measurements.

In the Bayesian time-domain method, the joint PDF p(y1, y2, . . . , yNp |θ, C) and the
conditional PDFs p(yn|yn−Np, yn−Np+1, . . . , yn−1, θ, C) are known in closed-forms for the
stationary or nonstationary responses of linear multi-degree-of-freedom systems. However,
its extension for nonlinear systems is not a trivial task since their responses are in general
non-Gaussian. Significant efforts have been made in solving the Fokker–Planck equation for
the non-Gaussian response PDF of nonlinear systems [39, 74, 96, 158, 208, 211]. However,
these methods compute the PDF at a particular time instant but not the joint PDF of the
response at different time steps, required by the time-domain approach. Up to the author’s
knowledge, an efficient computation method of the joint PDF p(y1, y2, . . . , yNp |θ, C) and
the conditional PDFs p(yn|yn−Np, yn−Np+1, . . . , yn−1, θ, C) for general nonlinear systems
is not available at the current stage of the literature and may not be even in the near future.
Therefore, an extension of the Bayesian time-domain approach to nonlinear systems seems
not achievable, at least in the foreseeable future.

4.9 Extended Readings

Chapters 3 and 4 presented two Bayesian methods to handle output-only measurements if
the excitation can be modeled by stochastic process with a prescribed parametric model.
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Other Bayesian methods were developed by the author and his co-workers in recent years for
different applications. In this section, several selected methods are briefly introduced. Note
that the symbols are modified here to be consistent with this book so some of them are slightly
different from the original articles.

The Bayesian fast Fourier transform approach uses the statistical properties of discrete
Fourier transforms, instead of the spectral density estimators, to construct the likelihood func-
tion and the updated PDF of the model parameters [292]. It does not rely on the approximation
of the Wishart distributed spectrum. Expressions of the covariance matrix of the real and imag-
inary parts of the discrete Fourier transform were given. The only approximation was made
on the independency of the discrete Fourier transforms at different frequencies. Therefore, the
Bayesian fast Fourier transform approach is more accurate than the spectral density approach
in the sense that one of the two approximations in the latter is released. However, since the
fast Fourier transform approach considers the real and imaginary parts of the discrete Fourier
transform, the corresponding covariance matrices are 2No × 2No, instead of No × No in the
spectral density approach. Therefore, the spectral density approach is computationally more
efficient than the fast Fourier transform approach.

Instead of output-only response measurements, measured input–output data was considered
in Yuen and Katafygiotis [291]. Unlike other existing methods, it considers explicitly the
measurement noise in both the input and output data. Let N denote the total number of observed
time steps. Using the Bayes’ theorem, the updated PDF of the parameters θ given the measured
input G1, G2, . . . , GN of the excitation F and the measured response y1, y2, . . . , yN is given
by:

p(θ|y1, y2, . . . ,yN, G1, G2, . . . , GN, C) =
κ0p(θ|G1, G2, . . . , GN, C)p(y1, y2, . . . , yN |G1, G2, . . . , GN, θ, C)

(4.54)

where κ0 is a normalizing constant. The probability distribution p(θ|G1, G2, . . . , GN, C) rep-
resents the information from the measured input only. It can be approximated by the prior
PDF p(θ|G1, G2, . . . , GN, C) ≈ p(θ|C) since the measured input alone does not have much
say on the model parameters (though it contains some information of the prediction-error vari-
ance, e.g., the rms of the measurement noise should be less than the rms of the measurement).
The likelihood function p(y1, y2, . . . , yN |G1, G2, . . . , GN, θ, C) reflects the contribution of
the measured data y1, y2, . . . , yN and G1, G2, . . . , GN in establishing the updated PDF of the
model parameters. Since p(y1, y2, . . . , yN |G1, G2, . . . , GN, θ, C) is jointly Gaussian, direct
calculation of this PDF encounters similar computational problems as in the exact formulation
shown in Section 4.2. Therefore, a similar approximated likelihood expansion is introduced:

p(y1, y2, . . . , yN |G1, G2, . . . , GN, θ, C) ≈ p(y1, y2, . . . , yNp |G1, G2, . . . , GN, θ, C)

×
N∏

n=Np+1

p(yn|yn−Np, yn−Np+1, . . . , yn−1, G1, G2, . . . , GN, θ, C)

(4.55)

Again, the conditional PDFs are conditional on the last Np time steps only. In order to obtain the
reduced-order joint PDF and the conditional PDFs, the differential equation of the state space
model was converted to a difference equation. By considering the input measurement noise,
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the usually observed problem of underestimating the parametric uncertainty can be resolved.
For more details, please refer to Yuen and Katafygiotis [291].

In Yuen et al. [287], the Bayesian unified approach was proposed to handle the more general
case with incomplete input and incomplete output noisy measurements. This feature avoids
the possible underestimation on the parametric uncertainty in practice. The Bayesian unified
method opens a wide range of applications, including the special cases of ambient vibration
surveys, and measured input–output noisy data. An application was presented for a building
subjected to wind and ground excitation simultaneously. The unmeasured wind pressure was
modeled as a stochastic process with uncertain parameters but the ground excitation was
observed with measurement noise. The structural response was also observed at a limited
number of DOFs only. The unified method was applied successfully for model updating and
damage detection purpose.

In the literature and the previously mentioned identification methods, the input is either
measured or modeled as a prescribed parametric stochastic model (even though the parameters
may be unknown). This seems to be a necessary condition for model identification purpose.
For example, consider a linear single-degree-of-freedom system. In the frequency domain, the
response X is equal to the input F, magnified by the transfer function of the oscillator H:

X(ω) = H(ω)F(ω) (4.56)

Therefore, if the time-frequency model of the input is completely unknown, the output mea-
surement does not have any say on the transfer function of the oscillator since there exists a
set of inputs to match with the measured outputs:

F(ω) = X(ω)/H(ω) (4.57)

In other words, identification of the model parameters is impossible in this case since all model
parameters (as long as the associated transfer function is non-zero) give the same likelihood
(perfect match) to the measurement.

However, if two or more DOFs are measured in a multi-story building subjected to ground
motion, the ratio between the response of different DOFs will be constrained by the prescribed
class of structural models, such as shear building models. In Yuen and Katafygiotis [294],
a frequency-domain method for unknown inputs was proposed and it does not assume any
time-frequency model for the inputs. The method takes the advantage that when the number of
the measured channels is larger than the number of independent external excitations, there are
mathematical constraints among the responses of different degrees of freedom. For example,
when the building is subjected to earthquake ground motion, the number of independent inputs
is one. If the responses of two or more degrees of freedom are measured for this building,
there is information to infer the structural properties even though no assumption is made on
the time-frequency content of the excitation. Specifically, the data is partitioned into two parts:

DA = [yA
0 , yA

1 , . . . , yA
N−1]

DB = [yB
0 , yB

1 , . . . , yB
N−1]

(4.58)

where yA
n and yB

n , n = 0, 1, . . . , N − 1, are the measurements corresponding to the first NF

and last No − NF DOFs, respectively. The number NF denotes the dimension of the input F.
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Then, the likelihood function can be expanded by the Bayes’ theorem:

p(D|θ, C) = p(DA,DB|θ, C) = p(DB|θ,DA, C)p(DA|θ, C) (4.59)

It turns out that the likelihood function p(DA|θ, C) does not depend on θ for this partitioning
arrangement and the conditional likelihood function p(DB|θ,DA, C) can be constructed in
the frequency domain. For details, please refer to Yuen and Katafygiotis [294]. However,
caution must be made on the ‘ill-posedness’ of the inverse problem since this relaxation of the
assumption on the input stochastic model breaks the bonding between different frequencies and
induces a higher degree of ill conditioning of the problem. Therefore, the Bayesian framework
is important in order to indicate if it is globally identifiable to avoid misleading results.

If the mathematical model for the system of concern has too many uncertain parameters,
the measurement will not provide sufficient mathematical constraints/equations to uniquely
identify the uncertain parameters. However, experienced engineers can identify the critical
substructures for monitoring. Then, a free body diagram can be drawn to focus on these
critical substructures only. Note that the internal forces on the boundary of the substructures are
unknown and difficult to measure, so they are treated as an uncertain input to the substructure.
Furthermore, these internal forces share the dominant frequencies of the structure so they cannot
be modeled arbitrarily as white noise or other prescribed colored noise. However, with the same
idea as in Yuen and Katafygiotis [294], these interface forces can be treated as unknown inputs
without assuming their time-frequency content [289]. This enables a large number of possible
applications in structural health monitoring and also enhances the computational efficiency
since one does not need to consider the whole system.



5
Model Updating Using
Eigenvalue–Eigenvector
Measurements

Keywords: Bayesian inference; damage detection; eigenvalue problem; iterative algorithm;
modal data; mode shape expansion; model updating; structural health monitoring; substructure;
system identification

In this chapter, a Bayesian methodology is presented for dynamical model updating using
noisy incomplete modal data corresponding to eigenvalues (modal frequencies) and partial
eigenvectors (mode shapes) of some of the modes of a dynamical system. The procedure can
be used to find the most probable model within a specified class of dynamical models as well
as the most probable values of the system modal frequencies and the full system mode shapes.
The method does not require matching measured modes with corresponding modes from the
dynamical model, which is in contrast to many existing methods. To find the most probable
values of the dynamical model parameters and system modal parameters, the method uses an
iterative scheme involving a series of coupled linear optimization problems. Furthermore, it
does not require solving the eigenvalue problem of any dynamical model; instead, the eigen
equations appear in the prior probability distribution to provide soft constraints. The method is
computationally efficient and robust, judging from its successful application to noisy simulated
data for a twelve-story building model and for a three-dimensional six-story braced-frame
model. This latter example is also used to demonstrate an application to structural health
monitoring.

5.1 Introduction

A generalized eigenvalue problem can be defined as follows:

Aφ = λBφ (5.1)

Bayesian Methods for Structural Dynamics and Civil Engineering Ka-Veng Yuen
© 2010 John Wiley & Sons (Asia) Pte Ltd
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where A ∈ RNd×Nd and B ∈ RNd×Nd are square matrices to govern the behavior of a system,
and λ and φ ( /= 0) are called the eigenvalue and eigenvector, respectively, of the generalized
eigenvalue problem. In the case if B is invertible, the generalized eigenvalue problem deduces
to a standard eigenvalue problem:

(B−1A)φ = λφ (5.2)

for the matrix B−1A.
For structural/mechanical dynamics problems, the equation of motion of a linear system

with Nd degrees of freedom (DOFs) is given by:

Mẍ + Cẋ + Kx = T0F(t) (5.3)

where M, C and K are the mass, damping and stiffness matrix, respectively, and F is the
external excitation with T0 being a force distributing matrix. If A = K and B = M are taken,
then the generalized eigenvalue problem in Equation (5.1) will be associated to the solution for
free vibration of the undamped system. The eigenvalues are the squared modal frequencies:

λ(m) = �(m)2
, m = 1, 2, . . . , Nd (5.4)

and the eigenvectors, φ(1), φ(2), . . . , φ(Nd ), are the mode shapes.
Most existing global structural health monitoring methods use dynamical model updating

to determine local loss of stiffness by minimizing a measure of the difference between the
modal frequencies and mode shapes measured in dynamic tests and those calculated from a
finite-element model of the structure. The measured modal parameters are those estimated
from dynamic test data using some modal identification procedure. A generic form of the
goodness-of-fit function to be minimized is:

Jg(θ) =
Nm∑
m=1

wm

[
λ(m)(θ) − λ̂(m)

]2 +
Nm∑
m=1

w′
m

∣∣∣∣
∣∣∣∣φ(m)(θ) − φ̂

(m)
∣∣∣∣
∣∣∣∣
2

(5.5)

where λ̂(m) and φ̂
(m)

are the measured eigenvalue and eigenvector of the mth mode, λ(m)(θ) and
φ(m)(θ) are the eigenvalue and eigenvector, respectively, of the mth mode from the dynamical
model with parameter vector θ that determines the stiffness and mass matrix, and wm and
w′

m, m = 1, 2, . . . , Nm, are chosen weightings that depend on the specific method. One major
difficulty is that mode matching is required, i.e., it is necessary to determine which model mode
matches which measured mode. If only measurements of partial mode shapes are available, this
will not be a trivial task. Another major difficulty is that the Nm observed modes in dynamic
tests might not necessarily be the Nm lowest-frequency modes in practice. In other words,
some lower modes might not be detected. For example, some torsional modes are not excited.
Furthermore, in the case where there is damage in the structure, the order of the modes might
switch because the local loss of stiffness from damage may affect some modal frequencies
more than others, making the mode matching even more challenging.

Recently, methods have been proposed for solving this model updating problem which avoid
mode matching [18, 51, 52, 267]. This is accomplished by employing the concept of system
mode shapes that are used to represent the actual mode shapes of the structural system at all
degrees of freedom corresponding to those of the dynamical model, but they are distinct from the
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mode shapes of the dynamical model, as will be seen more clearly later. Bayesian probabilistic
methods are then used to update the dynamical model parameters and the system mode shapes
based on the available modal data. Furthermore, Rayleigh quotient frequencies, which are
based on the dynamical model and the system mode shapes, are employed instead of the
modal frequencies of the dynamical model, so the eigenvalue problem needs never be solved.

First, let’s introduce the key idea of the proposed approach with a simple ideal example.
Consider the generalized eigen equation for the mth mode of the structure:

Kφ(m) = �(m)2
Mφ(m) (5.6)

where �(m) and φ(m) are the modal frequency and mode shape of the mth mode, respectively,
the mass matrix M ∈ RNd×Nd is assumed known and the stiffness matrix K = K(θ) ∈ RNd×Nd

is parameterized by the uncertain parameters in θ = [θ1, θ2, . . . , θNθ
]T ∈ RNθ :

K = K0 +
Nθ∑
l=1

θlKl (5.7)

where the subsystem stiffness matrices Kl, l = 0, 1, . . . , Nθ , are prescribed up to a scaling
factor. Then, by plugging Equation (5.7) into Equation (5.6), the eigenvalue problem becomes:

[
K1φ

(m), K2φ
(m), . . . , KNθ

φ(m)
]
θ =

(
�(m)2

M − K0

)
φ(m) (5.8)

Therefore, if Nθ = Nd and the set {K1φ
(m), K2φ

(m), . . . , KNθ
φ(m)} is linearly independent,

the stiffness parameter vector θ is readily obtained:

θ = [
K1φ

(m), K2φ
(m), . . . , KNθ

φ(m)
]−1

(
�(m)2

M − K0

)
φ(m) (5.9)

Otherwise, the problem is unidentifiable and multiple solutions exist. In this case, the smallest
least-squares solution may be obtained by using the Penrose generalized inverse:

θSLS = [
K1φ

(m), K2φ
(m), . . . , KNθ

φ(m)
]† (

�(m)2
M − K0

)
φ(m) (5.10)

where † denotes the Penrose generalized inverse of a matrix [189]. In this case, measurement of
more modes or simplification of the parameterization will be necessary for a unique solution.

The nice feature of this idea is that the order of the measured mode m is not necessarily
known since there is no matching between the measured and model modes in contrast to
Equation (5.5). This is important for practical situations where it is difficult to judge whether
the Nm measured modes are the lowest Nm modes. This is because some of the modes may
not be excited in the modal testing and they are missing in modal identification. However, this
formulation requires complete mode shape measurements, which are not available in practice.
Furthermore, the measurements are contaminated by measurement noise but this formulation
does not have an explicit treatment on it.

In this chapter, a Bayesian model updating method using incomplete modal data is presented
with applications to structural health monitoring. As reported in the literature [18, 51, 52, 267],
the realistic assumption is made that only the modal frequencies and partial mode shapes
of some modes are measured; system mode shapes are also introduced, which avoid mode
matching between the measured modes and those of the dynamical model. The novel feature
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in this work is that system frequencies are also introduced as parameters to be identified in order
to represent actual modal frequencies of the dynamical system (assuming that the dynamical
behavior is well approximated by linear dynamics; otherwise they should be interpreted in
the equivalent linear sense). The eigen equations of the dynamical model are used only in
the prior probability distribution to provide soft constraints. Furthermore, to calculate the
most probable values of the model parameters based on the modal data, an efficient iterative
procedure is used that involves a series of coupled linear optimization problems, rather than
directly solving the challenging nonlinear optimization problem by some general algorithm
that may give convergence difficulties in the high-dimensional parameter space.

In the next section, the proposed updating approach is presented which provides estimates
of the system modal frequencies and system mode shapes, as well as estimates of the stiffness
model parameters, based on incomplete modal data. Examples with a twelve-story building
and a three-dimensional braced frame will be used to demonstrate the method with applications
to structural health monitoring.

5.2 Formulation

A class of dynamical models C is considered with Nd DOFs that has a known mass matrix
M ∈ RNd×Nd (which is assumed to be established with sufficient accuracy from the engineering
drawings of the structure) and the stiffness matrix K(θ) ∈ RNd×Nd is parameterized by θ =
[θ1, θ2, . . . , θNθ

]T ∈ RNθ as follows:

K(θ) = K0 +
Nθ∑
l=1

θlKl (5.11)

where the subsystem stiffness matrices Kl, l = 0, 1, . . . , Nθ , are specified, e.g., by a finite-
element model of the structure. The scaling parameters in θ allow the nominal model matrix
given by θ = θη in Equation (5.11) to be updated based on dynamic test data from the system.

Assume that Nm(≤ Nd) modes of the system are measured (not necessarily the first Nm

lowest frequency modes), which have eigenvaluesλ(m),m = 1, 2, . . . , Nm, and real eigenvector
components φ(m) ∈ RNd , m = 1, 2, . . . , Nm. It is not assumed that these modal parameters
satisfy exactly the eigenvalue problem of any given dynamical model (M, K(θ)) because there
are always modeling approximations and errors. The quantities λ(m) and φ(m) are referred to
as the system eigenvalue and eigenvector, respectively of the mth mode to distinguish them
from the corresponding modal parameters given by any dynamical model specified by θ. Given
a parameter vector θ, the model can be defined in C. The prior probability density function

(PDF) for λ = [
λ(1), λ(2), . . . , λ(Nm)

]T
and φ = [

φ(1) T , φ(2) T , . . . , φ(Nm) T
]T

is chosen as:

p(λ, φ|θ, C) = κ0 exp

[
−1

2
Jg(λ, φ; θ)

]
(5.12)

where κ0 is a normalizing constant and the goodness-of-fit function is given by:

Jg(λ, φ; θ) =

⎡
⎢⎢⎢⎢⎣

(K(θ) − λ(1)M)φ(1)

(K(θ) − λ(2)M)φ(2)

...

(K(θ) − λ(Nm)M)φ(Nm)

⎤
⎥⎥⎥⎥⎦

T

�−1
eq

⎡
⎢⎢⎢⎢⎣

(K(θ) − λ(1)M)φ(1)

(K(θ) − λ(2)M)φ(2)

...

(K(θ) − λ(Nm)M)φ(Nm)

⎤
⎥⎥⎥⎥⎦

(5.13)
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This prior PDF is based on choosing a Gaussian PDF as a probability model for the eigen
equation errors, where the prior covariance matrix �eq controls the size of these equation
errors. The uncertainty in the equation errors for each mode are modeled as independent and
identically distributed, so:

�eq = σ2
eqINdNm (5.14)

where INdNm denotes the NdNm × NdNm identity matrix and σ2
eq is a prescribed equation-error

variance. The usage of this variance parameter allows for explicit treatment of modeling error
as the parametric models for the stiffness matrix, and hence the eigen equation, is never exact
in practice. If this error level can be estimated, the mathematical constraint given by the eigen
equation will become a soft constraint instead of a rigid constraint. In other words, errors
of the eigen equation in the level corresponding to σeq is allowed. In the numerical examples
presented later, the value of σ2

eq is chosen to be very small so that the eigen equations are nearly
satisfied. This means that the system modal frequencies and mode shapes will correspond
closely to modal parameters of the identified dynamical model. For modal data from a real
structure, this would be a reasonable strategy to start with. If the measured modal parameters
did not agree well with those corresponding to the identified (most probable) dynamical model,
implying considerable modeling errors, then σ2

eq could be increased. This procedure allows
explicit control of the inherent trade-off between how well the measured modal parameters
are matched and how well the eigen equations of the identified dynamical model are satisfied.
This additional modeling flexibility is an appealing feature of this method.

The prior PDF p(λ, φ|θ, C) implies that, given a class of dynamical models and before using
the dynamic test data, the most probable values of λ and φ are those that minimize the Euclidean
norm (2-norm) of the error in the eigen equation for the dynamical model. This implies that
the prior most probable values of λ and φ are the squared modal frequencies and mode shapes
of a dynamical model, but these values are never explicitly required. This prior PDF will have
multiple peaks because there is no implied ordering of the modes here.

The prior PDF for all the unknown parameters is given by:

p(λ, φ, θ|C) = p(λ, φ|θ, C)p(θ|C) (5.15)

where the prior PDF p(θ|C) can be taken as a Gaussian distribution with mean θη representing
the nominal values of the model parameters and with covariance matrix �θ . In the examples
later, the prior covariance matrix �θ is taken to be diagonal with large variances, giving virtually
a non-informative prior.

To construct the likelihood function, the measurement error ε is introduced:
[

λ̂

ψ̂

]
=

[
λ

Loφ

]
+ ε (5.16)

and a Gaussian probability model is chosen for ε ∈ RNm(No+1) with zero mean and
covariance matrix �ε, which can be obtained by Bayesian modal identification methods

[136, 285, 290, 291], ψ̂ =
[
ψ̂

(1) T
, ψ̂

(2) T
, . . . , ψ̂

(Nm) T
]T

and λ̂ = [λ̂(1), λ̂(2), . . . , λ̂(Nm)]T ,

where ψ̂
(m) ∈ RNo gives the observed components of the system eigenvector of the mth mode

and λ̂(m) gives the corresponding observed system eigenvalue from dynamic test data. Finally,
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Lo is an NmNo × NmNd observation matrix of ‘1s’ or ‘0s’ that picks the components of φ

corresponding to the No measured DOFs. The likelihood function is therefore:

p
(
λ̂, ψ̂|λ, φ, θ, C

)
= p

(
λ̂, ψ̂|λ, φ

)
= G

([
λ̂

T
, ψ̂

T
]T

;
[
λT , (�φ)T

]T
, �ε

)
(5.17)

that is, a Gaussian distribution with mean
[
λT , (Loφ)T

]T
and covariance matrix �ε.

The posterior PDF for the unknown parameters is given by the Bayes’ theorem:

p
(
λ, φ, θ|λ̂, ψ̂, C

)
= κ1p

(
λ̂, ψ̂|λ, φ, θ, C

)
p(λ, φ|θ, C)p(θ|C)

= κ1p
(
λ̂, ψ̂|λ, φ

)
p(λ, φ|θ, C)p(θ|C)

(5.18)

The most probable values of the unknown parameters can be found by maximizing this PDF.
To proceed, the objective function is defined as [286]:

J(λ, φ, θ) =1

2
(θ − θη)T �−1

θ (θ − θη) + 1

2σ2
eq

Nm∑
m=1

∣∣∣∣
∣∣∣∣
(

K(θ) − λ(m)M
)

φ(m)
∣∣∣∣
∣∣∣∣
2

+ 1

2

[
λ̂ − λ

ψ̂ − Loφ

]T

�−1
ε

[
λ̂ − λ

ψ̂ − Loφ

] (5.19)

which is the negative logarithm of the posterior PDF without including the constant that does not
depend on the uncertain parameters. Here, ||.|| denotes the Euclidean norm. Then, the function
J(λ, φ, θ) is minimized instead of maximizing the posterior PDF. The objective function J is
not a quadratic function for the uncertain parameters. However, this function is quadratic for
any of the uncertain parameter vectors of λ, φ or θ if the other two are fixed. Therefore, the
original nonlinear optimization problems can be done iteratively through a sequence of linear
optimization problems, as shown in the next section.

5.3 Linear Optimization Problems

The mode shapes are usually measured with incomplete components, i.e., with missing DOFs
but the modal frequencies are measured with relatively high accuracy. Therefore, the sequence
of optimization starts from computing the missing components of the mode shapes. First set
the updated model parameters at their nominal values:

θ� = θη (5.20)

and the eigenvalues at their measured values:

λ� = λ̂ (5.21)
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Then, perform a sequence of iterations comprised of the following linear optimization
problems:

φ� = arg min
φ

J(λ�, φ, θ�)

λ� = arg min
λ

J(λ, φ�, θ�)

θ� = arg min
θ

J(λ�, φ�, θ)

(5.22)

until the prescribed convergence criterion is satisfied. Each of these three optimization problems
is explained in more detail in the next three subsections.

5.3.1 Optimization for Mode Shapes

By minimizing the objective function J(λ, φ, θ) in Equation (5.19) with respect to φ, the
optimal vector φ� can be obtained:

φ� = [σ−2
eq Gφ + LT

o (�−1
ε )22Lo]−1LT

o [(�−1
ε )21(λ̂ − λ�) + (�−1

ε )22ψ̂] (5.23)

where (�−1
ε )21 and (�−1

ε )22 are the NmNo × Nm left bottom and NmNo × NmNo right bottom
sub-matrices of �−1

ε , and the symmetric matrix Gφ is given by:

Gφ =

⎡
⎢⎢⎢⎢⎢⎣

(λ(1)�M − K�)2 0

(λ(2)�M − K�)2

. . .

0 (λ(Nm)�M − K�)2

⎤
⎥⎥⎥⎥⎥⎦

NdNm×NdNm

(5.24)

where the updated stiffness matrix K� = K(θ�).

5.3.2 Optimization for Modal Frequencies

By minimizing the objective function J(λ, φ, θ) in Equation (5.19) with respect to λ, the
updated parameter vector λ� is given by:

λ� = [Gλ + (�−1
ε )11]−1

(
σ−2

eq

⎡
⎢⎢⎢⎢⎢⎢⎣

φ(1)�T
MK�φ(1)�

φ(2)�T
MK�φ(2)�

...

φ(Nm)� T
MK�φ(Nm)�

⎤
⎥⎥⎥⎥⎥⎥⎦

+ (�−1
ε )11λ̂ + (�−1

ε )12(ψ̂ − Loφ
�)

)

(5.25)
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where (�−1
ε )11 and (�−1

ε )12 are the Nm × Nm left top and Nm × NmNo right top sub-matrices
of �−1

ε , and the matrix Gλ is given by:

Gλ = σ−2
eq

⎡
⎢⎢⎢⎢⎢⎢⎣

φ(1)�T
M2φ(1)� 0

φ(2)�T
M2φ(2)�

. . .

0 φ(Nm)� T
M2φ(Nm)�

⎤
⎥⎥⎥⎥⎥⎥⎦

Nm×Nm

(5.26)

5.3.3 Optimization for Model Parameters

By minimizing Equation (5.19) with respect to θ, the updated model parameter vector θ� is
given by:

θ� = (σ−2
eq GT

θ Gθ + �−1
θ )−1(σ−2

eq GT
θ b + �−1

θ θη) (5.27)

where the matrix Gθ is given by:

Gθ =

⎡
⎢⎢⎢⎢⎢⎣

K1φ
(1)� K2φ

(1)� · · · KNθ
φ(1)�

K1φ
(2)� K2φ

(2)� · · · KNθ
φ(2)�

...
...

. . .
...

K1φ
(Nm)� K2φ

(Nm)� · · · KNθ
φ(Nm)�

⎤
⎥⎥⎥⎥⎥⎦

NdNm×Nθ

(5.28)

and the vector b ∈ RNdNm is given by:

b =

⎡
⎢⎢⎢⎢⎢⎣

(λ(1)�M − K0)φ(1)�

(λ(2)�M − K0)φ(2)�

...

(λ(Nm)�M − K0)φ(Nm)�

⎤
⎥⎥⎥⎥⎥⎦

NdNm×1

(5.29)

5.4 Iterative Algorithm

The three optimization problems are coupled. In other words, the expressions of the optimal
vectors depend on the optimal values of other parameters. In order to search for the overall
optimal parameters efficiently, the proposed methodology updates the system modal frequen-
cies, system mode shapes and stiffness scaling parameters in an iterative manner by using
successively the optimization results of Section 5.3. The iterative procedure consists of the
following steps:

1. Take the initial values of the model parameters as the nominal values, θ� = θη, and the
eigenvalues as the measured values, λ� = λ̂. Then, K� = K(θ�).
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2. Update the estimates of the system eigenvectors φ(m)�, m = 1, 2, . . . , Nm, using Equa-
tion (5.23).

3. Update the estimates of the system eigenvalues (squared modal frequencies) λ(m)�, m =
1, 2, . . . , Nm, using Equation (5.25).

4. Update the estimates of the model parameters θ� by using Equation (5.27).
5. Iterate the previous Steps 2, 3 and 4 until the model parameters in θ� satisfy some conver-

gence criterion, thereby giving the most probable values of the model parameters based on
the modal data.

5.5 Uncertainty Estimation

The posterior PDF in Equation (5.18) can be well approximated by a Gaussian distribu-
tion centered at the optimal (most probable) parameters (λ�, φ�, θ�) and with covariance
matrix �(λ, φ, θ) equal to the inverse of the Hessian of the objective function J(λ, φ, θ) =
− ln p(λ, φ, θ|λ̂, ψ̂, C) calculated at the optimal parameters [19]. This covariance matrix is
given by:

�(λ, φ, θ) =

⎡
⎢⎣

σ−2
eq Gλ + (�−1

ε )11 −2σ−2
eq L1 + (�−1

ε )12Lo −σ−2
eq L2

σ−2
eq Gφ + LT

o (�−1
ε )22Lo σ−2

eq L3

sym σ−2
eq GT

θ Gθ + �−1
θ

⎤
⎥⎦

−1

(5.30)
where the matrix L1 is given by:

L1 =

⎡
⎢⎢⎢⎣

φ(1)� T
M(K� − λ(1)�M) 0

. . .

0 φ(Nm)� T
M(K� − λ(Nm)�M)

⎤
⎥⎥⎥⎦

Nm×NdNm

(5.31)

The lth column of L2 is given by:

(L2)lthcol =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ(1)�T
MKlφ

(1)�

φ(2)�T
MKlφ

(2)�

...

φ(Nm)�T
MKlφ

(Nm)�

⎤
⎥⎥⎥⎥⎥⎥⎦

Nm×1

(5.32)

The lth column of L3 is given by:

(L3)lthcol =

⎡
⎢⎢⎢⎢⎢⎣

[(K� − λ(1)�M)Kl + Kl(K� − λ(1)�M)]φ(1)�

[(K� − λ(2)�M)Kl + Kl(K� − λ(2)�M)]φ(2)�

...

[(K� − λ(Nm)�M)Kl + Kl(K� − λ(Nm)�M)]φ(Nm)�

⎤
⎥⎥⎥⎥⎥⎦

NdNm×1

(5.33)
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Summarizing, by letting ϑ = [λT , φT , θT ]T ∈ RNm(Nd+1)+Nθ denote all the uncertain model
parameters, the posterior PDF p(ϑ|λ̂, ψ̂) can be approximated by G(ϑ; ϑ�, �) where the mean
ϑ� consists of the most probable values of ϑ and the covariance matrix � of dimension Nm(Nd +
1) + Nθ is given above.

5.6 Applications to Structural Health Monitoring

5.6.1 Twelve-story Shear Building

In this simulated-data example, a twelve-story shear building is considered. It is assumed that
this building has uniformly distributed floor mass and uniform stiffness across the height. The
mass per floor is taken to be 100 metric tons, while the interstory stiffness is chosen to be
K̃ = 202.767 MN/m so that the first five modal frequencies are 0.900, 2.686, 4.429, 6.103 and
7.680 Hz. The covariance matrix �ε is diagonal with the variances corresponding to a 1.0%
coefficient of variation of the measurement error of the squared modal frequencies and mode
shapes for all modes, a reasonable value based on typical modal test results. For the simulated
modal data, a sample of zero-mean Gaussian noise with covariance matrix �ε was added to
the exact modal frequencies and mode shapes.

The nominal value of each story stiffness parameter is selected from a uniform distribu-
tion over 2K̃ to 3K̃, where K̃ is the actual interstory stiffness, so the nominal values θη are
significantly overestimated and the variation between the different interstory stiffness values
is very substantial. Recall that the nominal stiffness values are taken as the initial values in
the optimization to find the most probable values based on the modal data and it affects the
prior distribution of the stiffness parameters. The subsystem stiffness matrices are given by
K0 = 012×12 since the problem is linear:

K1 =
[

1 01×11

011×1 011×11

]
MN/m (5.34)

for the first story, and

Kl =

⎡
⎢⎢⎢⎣

0(l−2)×12

01×(l−2) 1 −1 01×(12−l)

01×(l−2) −1 1 01×(12−l)

0(12−l)×12

⎤
⎥⎥⎥⎦ MN/m (5.35)

for other stories, i.e., l = 2, 3, . . . , 12.
Consider first the case where complete measurements (all 12 DOFs) are utilized. Table 5.1

shows the initial (nominal) values and the final identified (most probable) values of the stiffness
parameters by applying the proposed updating method using different numbers of measured
modes; recall that the actual value is 202.767 MN/m for all these parameters. Even for such
a high level of modeling error in the nominal model (100–200%), the proposed methodology
successfully corrects the error and the identified stiffness parameters are distributed around the
actual value. By using Equation (5.30), the coefficients of variation (COV) can be estimated
and they are shown in parentheses. It is not surprising that the uncertainty reduces when the
number of measured modes increases.
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Table 5.1 Identification results for the most probable stiffness parameters using different number of
measured modes (with coefficients of variation in parentheses)

Parameter Initial values 2 modes 3 modes 4 modes 5 modes

θ1 412.2 198.9 (0.018) 200.7 (0.011) 204.9 (0.009) 204.4 (0.007)
θ2 499.2 204.2 (0.027) 204.2 (0.019) 205.3 (0.017) 203.6 (0.016)
θ3 561.8 191.6 (0.029) 193.0 (0.027) 196.7 (0.014) 199.4 (0.008)
θ4 460.0 202.9 (0.045) 207.7 (0.026) 202.0 (0.010) 203.9 (0.008)
θ5 523.6 184.2 (0.056) 204.6 (0.018) 203.1 (0.012) 204.2 (0.010)
θ6 595.3 207.8 (0.057) 202.0 (0.016) 201.0 (0.014) 202.3 (0.008)
θ7 488.7 199.8 (0.039) 202.3 (0.017) 204.1 (0.010) 202.6 (0.008)
θ8 476.2 204.0 (0.030) 205.6 (0.023) 205.6 (0.011) 204.3 (0.008)
θ9 435.6 209.1 (0.028) 204.3 (0.021) 199.6 (0.011) 201.4 (0.007)
θ10 467.3 198.9 (0.025) 209.0 (0.017) 205.6 (0.011) 205.2 (0.008)
θ11 464.4 201.9 (0.029) 203.5 (0.015) 201.1 (0.009) 201.4 (0.006)
θ12 464.1 193.2 (0.035) 201.1 (0.015) 203.7 (0.008) 202.6 (0.006)

Consider next the incomplete mode shape measurements where only six sensors on the first,
fourth, fifth, seventh, tenth and top floors are available. The results presented in Table 5.2 are
based on five measured modes and show the initial values, final most probable values, standard
deviations and COVs of the stiffness parameters, which are comparable to the COV of the
modal data. Figure 5.1 shows the iterative history for the most probable values of the stiffness
parameters, with convergence occurring in about 120 iterations. Again, the same set of nominal
stiffness values is used so the nominal model overestimated the interstory stiffnesses by 100
to 200%. The parameters converge very quickly even for such an unsatisfactory set of initial
values. The CPU time for 200 iterations is about 0.8 s with a conventional dual CPU 3.0 GHz
personal computer under the MATLAB® environment [171]. Figure 5.2 shows the comparison
between the identified system mode shapes (solid lines) and the actual mode shapes (dashed
lines) for the first five modes but the two sets of curves are on top of each other. Of course, it is
no wonder that the mode shape components of the observed degrees of freedom are estimated
better than the unobserved ones.

Table 5.2 Identification results for the most probable stiffness
parameters with measurements from five sensors and five modes

Parameter Initial values Identified θ� S.D. σθ COV

θ1 412.2 199.9 2.01 0.010
θ2 499.2 196.5 3.90 0.019
θ3 561.8 206.0 3.28 0.016
θ4 460.0 204.2 2.06 0.010
θ5 523.6 204.3 2.35 0.012
θ6 595.3 205.9 3.01 0.015
θ7 488.7 202.1 2.22 0.011
θ8 476.2 205.9 2.28 0.011
θ9 435.6 198.2 2.87 0.014
θ10 467.3 206.3 2.95 0.015
θ11 464.4 201.2 1.42 0.007
θ12 464.1 202.9 1.95 0.010
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Figure 5.1 Iteration history for the most probable values of the stiffness parameters with incomplete
measurement of mode shapes
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5.6.2 Three-dimensional Six-story Braced Frame

In this example, the Bayesian model updating method is applied to update the finite-element
model of a three-dimensional six-story braced frame, which is based on a model of an actual
laboratory test structure. It is square in plan with width a = 5 m. There are four columns for
each floor, one at each corner. Each of them have interstory stiffnesses of 10 MN/m and 15
MN/m in the x and y directions, respectively. Furthermore, each face in each floor is stiffened
by a brace and its stiffness is taken to be 20 MN/m. As a result, the interstory stiffness is 80
MN/m and 100 MN/m in the x and y directions, respectively. The floor mass is taken to be
10 metric tons for each floor. As a result, the first five modal frequencies of the structure are
3.432, 3.837, 6.305, 10.10 and 11.29 Hz.

In order to locate the face(s) that sustain damage, four stiffness parameters are used for
each story to give twenty-four stiffness parameters, θ4(l−1)+1 = Kl,+x, θ4(l−1)+2 = Kl,+y,
θ4(l−1)+3 = Kl,−x and θ4(l−1)+4 = Kl,−y, l = 1, 2, . . . , 6, where the index l represents the
story number and ‘+x’, ‘+y’, ‘−x’ and ‘−y’ represent the direction of the outward nor-
mal of the face. The actual values of these stiffnesses are Kl,+x = Kl,−x = 50 MN/m and
Kl,+y = Kl,−y = 40 MN/m, l = 1, 2, . . . , 6. In other words, θ1 = θ3 = · · · = θ23 = 50 MN/m
and θ2 = θ4 = · · · = θ24 = 40 MN/m. The floor plan is shown in Figure 5.3. The point
O′

l(x̄l, ȳl) is the stiffness center of floor l, where x̄l and ȳl, l = 1, 2, . . . , 6, are given by:

x̄l = a(Kl,+x − Kl,−x)

2(Kl,+x + Kl,−x)
; ȳl = a(Kl,+y − Kl,−y)

2(Kl,+y + Kl,−y)
(5.36)
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Figure 5.3 Floor plan for the 18-DOF model for identification
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The element stiffness matrix for the lth story with respect to the O′
l coordinates is:

K′
l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kl,+y + Kl,−y 0 0 −Kl,+y − Kl,−y 0 0

0 Kl,+x + Kl,−x 0 0 −Kl,+x − Kl,−x 0

0 0 Klt 0 0 −Klt

−Kl,+y − Kl,−y 0 0 Kl,+y + Kl,−y 0 0

0 −Kl,+x − Kl,−x 0 0 Kl,+x + Kl,−x 0

0 0 −Klt 0 0 Klt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.37)

where Klt is given by:

Klt =
(a

2
− x̄l

)2
Kl,+x +

(a

2
− ȳl

)2
Kl,+y +

(a

2
+ x̄l

)2
Kl,−x +

(a

2
+ ȳl

)2
Kl,−y (5.38)

Here, the first three DOFs and the last three DOFs correspond to the lower floor and the
upper floor of the story, respectively. Each of these sets of three DOFs correspond to the
x-translational, y-translational and torsional motion.

The element stiffness matrix for the lth story with respect to the DOFs (1), (2) and (3) in
Figure 5.3 of the upper and lower floors is given by:

Kl = T̄T K′
lT̄ (5.39)

where T̄ is given by:

T̄ =
[

T−1 0

0 T−1

]
; T =

⎡
⎢⎣

1 0 − a
2 + ȳl

0 1 − a
2 − x̄l

1 0 a
2 + ȳl

⎤
⎥⎦ (5.40)

The stiffness matrix for the 18-DOF structural model is assembled from those of the floors. The
DOFs for this stiffness matrix are (1), (2) and (3) shown in Figure 5.3 for each floor. However,
this stiffness matrix is not linear in the stiffness parameters θl. In this case, the relationship
between the stiffness matrix and the stiffness parameters can be linearized:

K = K0 +
24∑
l=1

θlKl (5.41)

where:

Kl = ∂K
∂θl

, l = 1, 2, . . . , 24 (5.42)

and

K0 = K −
24∑
l=1

θlKl (5.43)

where the matrices Kl, l = 0, 1, . . . , 24, will need to be updated in every iteration.
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It is assumed that only the first three x-directional and y-directional modes are measured
but not any of the torsional modes. This is done deliberately to simulate a common situation
where some of the modes are not excited sufficiently to be able to observe. In the identification
process, it is unknown that there are some missing modes. The six measured modes correspond
to the 1st (3.432 Hz), 2nd (3.837 Hz), 4th (10.10 Hz), 5th (11.29 Hz), 7th (18.08 Hz) and 9th
(21.31 Hz) modes. Sensors are placed on the +y and −y faces of the 1st, 2nd, 5th and 6th floors,
and the −x face of all floors to measure the modal frequencies and mode shape components.
The covariance matrix �ε is diagonal with 0.5% COV for the modal data. For the simulated
modal data, a sample of zero-mean Gaussian noise with covariance matrix �ε was added to
the exact modal frequencies and mode shapes. Initial values for all stiffness parameters are
taken to be 100 MN/m, which overestimates the values by 100% and 150% for the ±x and ±y

faces, respectively.
The iteration history for the most probable values of the stiffness parameters is shown in

Figure 5.4 and the values essentially converge after 500 iterations. It took about 11 s of PC time
to finish 1000 iterations. The stiffness parameters converge onto one of two values: one for the
±x faces (approximately 50 MN/m) and the other for the ±y faces (approximately 40 MN/m).
Recall that the substructure stiffness matrices Kl, l = 0, 1, . . . , 24, depend on the uncertain
stiffness parameters in this example, which slows down the convergence rate. Nevertheless,
the methodology is still considered very efficient.

Table 5.3 shows the actual values, identified values, standard deviations and COVs of the
stiffness parameters. The standard deviations are computed using Equation (5.30) and they
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Figure 5.4 Iteration history for the most probable values of the twenty stiffness parameters of the
undamaged structure
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Table 5.3 Identification results for the undamaged structure

Parameter Actual θ̃ Identified θ� S.D. σθ COV

θ1,+x 50 50.10 0.21 0.0042
θ1,+y 40 40.13 0.22 0.0054
θ1,−x 50 50.20 0.12 0.0025
θ1,−y 40 40.28 0.21 0.0052
θ2,+x 50 49.28 0.57 0.0113
θ2,+y 40 40.00 0.25 0.0061
θ2,−x 50 50.47 0.36 0.0072
θ2,−y 40 39.83 0.27 0.0068
θ3,+x 50 50.57 0.17 0.0033
θ3,+y 40 39.55 0.45 0.0111
θ3,−x 50 50.45 0.10 0.0020
θ3,−y 40 40.37 0.38 0.0096
θ4,+x 50 50.42 0.31 0.0062
θ4,+y 40 39.92 0.23 0.0057
θ4,−x 50 50.10 0.19 0.0038
θ4,−y 40 40.37 0.20 0.0049
θ5,+x 50 50.45 0.22 0.0043
θ5,+y 40 40.15 0.38 0.0096
θ5,−x 50 50.06 0.14 0.0027
θ5,−y 40 39.63 0.36 0.0089
θ6,+x 50 50.23 0.19 0.0038
θ6,+y 40 40.15 0.16 0.0040
θ6,−x 50 50.30 0.11 0.0022
θ6,−y 40 40.09 0.16 0.0039

vary up to about 1%. The identified values are all close to the actual values. The difference
between the actual and identified values are of similar order to the corresponding estimated
standard deviations.

5.6.2.1 Application to Structural Health Monitoring

The same three-dimensional braced-frame structure is assumed to be damaged on the +x face
of the first story and the +y face of the fourth story, giving a stiffness reduction of one third and
one quarter, respectively, of the original brace stiffnesses for these two faces. They correspond
to 15% and 10% stiffness reductions for the stiffness parameters corresponding to these faces,
respectively. It is noted that there is no sensor on the +x face. The first five modal frequencies
of the damaged structure are 3.419, 3.788, 6.251, 10.04 and 11.16 Hz and the damage alters
the order of the modes compared with the undamaged structure. Furthermore, the translational
and torsional modes are no longer purely translational and torsional, respectively, especially
for the higher modes. Here, six modes, which behave closer to translational, are measured and
they are the 1st (3.419 Hz), 2nd (3.788 Hz), 4th (10.04 Hz), 5th (11.16 Hz), 6th (16.14 Hz),
and 7th (17.90 Hz) modes. Initial values for the stiffness parameters are again taken to be
100 MN/m. Noisy modal data is used to identify this damaged structure, as in the case of the
undamaged structure.
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Figure 5.5 Iteration history for the most probable values of the twenty stiffness parameters of the
damaged structure

The iteration history is shown in Figure 5.5. It took 23 s of PC time to finish 2000 iterations,
with convergence occurring in about 1000 iterations. The most probable values of the stiffness
parameters converge onto one of four values, as expected: one for the +y face of the first story,
one for the other ±y faces, one for the +x face of the third story and one for the other ±x faces.
The identification results are shown in Table 5.4, which has a similar format to Table 5.3. It
is clearly seen that the +y face of the first story and the +x face of the third story have had
substantial stiffness reductions compared to the undamaged structure.

The discussion above uses the most probable values of the stiffness parameters based on
modal data from the undamaged and damaged structure. In order to further portray the damage,
these are the most probable values and the standard deviations for the stiffness parameters are
used to compute the probability that a given stiffness parameter θl has been reduced by a certain
fraction d compared to the undamaged state of the structure [18, 268]. An asymptotic Gaussian
approximation [197] is used for the integrals involved to give:

Pdam
l (d) = P(θpd

l < (1 − d)θud
l |C)

=
∫ ∞

−∞
P(θpd

l < (1 − d)θud
l |θud

l , C)p(θud
l |C)dθud

l

≈ �

⎡
⎣ (1 − d)θ�

l
ud − θ�

l
pd

√
(1 − d)2(σud

l )2 + (σpd
l )2

⎤
⎦

(5.44)
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Table 5.4 Identification results for the damaged structure

Parameter Actual θ̃ Identified θ� S.D. σθ COV

θ1,+x 42.5 42.32 0.19 0.0043
θ1,+y 40 40.13 0.19 0.0048
θ1,−x 50 49.65 0.16 0.0032
θ1,−y 40 40.09 0.20 0.0049
θ2,+x 50 50.17 0.74 0.0147
θ2,+y 40 39.55 0.53 0.0131
θ2,−x 50 49.91 0.35 0.0070
θ2,−y 40 39.84 0.54 0.0135
θ3,+x 50 49.47 0.20 0.0039
θ3,+y 40 40.05 0.34 0.0084
θ3,−x 50 49.55 0.13 0.0027
θ3,−y 40 39.96 0.34 0.0086
θ4,+x 50 49.21 0.35 0.0070
θ4,+y 36 35.73 0.30 0.0082
θ4,−x 50 49.98 0.24 0.0047
θ4,−y 40 39.62 0.34 0.0085
θ5,+x 50 50.14 0.28 0.0056
θ5,+y 40 39.98 0.30 0.0075
θ5,−x 50 49.56 0.14 0.0028
θ5,−y 40 39.94 0.28 0.0071
θ6,+x 50 49.49 0.24 0.0047
θ6,+y 40 40.22 0.19 0.0048
θ6,−x 50 49.76 0.12 0.0023
θ6,−y 40 40.06 0.19 0.0047

where �(·) is the cumulative distribution function of the standard Gaussian random variable,
θ�
l
ud and θ�

l
pd denote the most probable values of the stiffness parameters for the undamaged

and (possibly) damaged structures respectively, and σud
l and σ

pd
l are the corresponding standard

deviations of the stiffness parameters.
The probabilities of damage for the twenty-four θl are shown in Figure 5.6. It can be clearly

seen that the +x face of the first story and the +y face of the fourth story have damage with a
probability of almost unity. The means of the damage are 15.5% and 10.5% while their actual
values are 15% and 10%, respectively. Furthermore, the COVs of these estimates are 0.6% and
1.0%, respectively. These types of plots can be interpreted as follows. Consider the curve for
the probability of damage of the +x face of the first story. The damage is 13.5% or more with a
probability of almost 1.0 and has a probability of only 0.05 to exceed 16.3%. For the twenty-two
faces that are undamaged, the difference between the mean stiffness parameter values of the
undamaged and damaged structures is less than 2.5%, which is within the expected uncertainty
level.

5.7 Concluding Remarks

A Bayesian model updating methodology is presented with application to structural health
monitoring. The method utilizes noisy incomplete modal data, i.e., there can be missing mode
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Figure 5.6 Probability of damage of different faces of the frame

shape components and missing modes. It does not require any matching between measured and
calculated modes from a structural model, so there is no need to solve the eigenvalue problem
corresponding to the structural model. Instead of solving directly the nonlinear optimization
problem, an efficient algorithm of a sequence of linear optimizations is introduced. The illus-
trative examples confirm the effectiveness of the proposed approach, showing it to be both
computationally efficient and robust. Furthermore, the method successfully traces back to the
correct parameter values even though the initial values are very far from the actual values. The
second example is a very difficult problem with large number of unknown stiffness parameters
and mode shape components. It shows that the method updates the structural models success-
fully without knowing that there are missing modes in the modal data set and that the ordering
of the modes switches due to damage. However, the method does not require any information
about the switching and missing modes. The measured modes for the undamaged and damaged
structure correspond to different orders of the structural modes and this information is also
unknown in the updating process. This is very important in practical usage.





6
Bayesian Model Class Selection

Keywords: asymptotic expansion; evidence; information entropy; Markov Chain Monte
Carlo simulation; modal identification; Ockham factor; regression problem; robustness;
seismic attenuation

6.1 Introduction

The most commonly encountered problem in system identification is to find the best/optimal
model in a specified class of models, e.g., the class of shear building models or class of
bilinear hysteretic models. The problem is referred to as parametric identification and has been
discussed in the previous chapters. The more general problem of model class selection has not
been well explored in system identification. In this problem, the concern is on the selection of
a suitable class of models for parametric identification. It is obvious that a more complicated
model can fit the data better than a less complicated one which has fewer adjustable/uncertain
parameters. Therefore, if the optimal model class is chosen by minimizing some norm of the
error between the measured data and the corresponding predictions of the optimal model in
each model class, the optimal model class will always be the most complicated one since it
covers the largest output space. For example, in modal identification, using a twenty-mode
model would always be better than using a ten-mode model because the former one would fit
the data better, although the improvement might be negligible. This approach is therefore likely
to lead to over-fitted model classes. When an over-fitted model is used for future prediction, it is
likely to lead to poor results because the identified model depends too much on the details of the
data and the measurement noise in the data has an important role in the data fitting. Therefore,
in model class selection, it is necessary to penalize more complicated model classes. This point
was first recognized by H. Jeffreys who did pioneering work on the application of Bayesian
methods [121]. He pointed out the need for a quantitative expression of the very old philosophy
expounded by William of Ockham (or Occam in Latin) and known as Ockham’s razor, which
is roughly translated from Latin as: ‘It is vain to do with more what can be done with fewer’
[242]. In the present context, this philosophy implies that simpler model classes are more
preferable than unnecessarily complicated ones. In other words, the selected class of models
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should agree closely with the observed behavior of the system but otherwise be as simple
as possible. Box and Jenkins (1970) also emphasized the same principle when they referred
to the need for parsimonious models in time-series forecasting, although they did not give a
quantitative expression of their principle of parsimony [30]. Akaike recognized that maximum
likelihood estimation is insufficient for model order selection in time-series forecasting using
ARMA models and came up with another term to be added to the logarithm of the likelihood
function that penalizes against complicated parameterization of the models [2]. This was later
modified by Akaike [3] and by Schwarz [232].

In recent years, there has been a re-appreciation of the work of Jeffreys on the application of
Bayesian methods [121], especially due to the expository publications of E.T. Jaynes [118, 120].
In particular, the Bayesian approach to model class selection has been further developed by
showing that the evidence for each model class provided by the data (that is, the probability
of getting the data based on the whole model class) automatically enforces a quantitative
expression of a principle of model parsimony or of Ockham’s razor [98, 164, 242]. There is
no need to introduce any ad-hoc penalty term as was done in some of the earlier work on this
problem.

Influenced by the mind of forward modeling problems, it is easily directed to adopt compli-
cated model classes so as to capture various complex physical mechanisms. However, the more
complicated the model class is utilized, the more uncertain parameters are normally induced
unless extra mathematical constraints are imposed. In the former case, the model output may
not necessarily be accurate even if the model well characterizes the physical system since
the combination of the many small errors from each uncertain parameter can induce a large
output error. In the latter case, it is possible that the extra constraints induce substantial errors.
Therefore, it is important to use a proper model class for system identification purpose. In
this chapter, the Bayesian model class selection approach is introduced and applied to select
the most plausible/suitable class of mathematical models representing a static or dynamical
(structural, mechanical, atmospheric, ...) system (from some specified model classes) by using
its response measurements. This approach has been shown to be promising in several research
areas, such as artificial neural networks [164, 297], structural dynamics and model updating
[23], damage detection [150] and fracture mechanics [151], etc.

Example. Does Small Posterior Uncertainty Imply Good Data Fitting?
From the above discussion, it is clear that a good model class to use for identification should be
capable to fit the data well and provide sufficient robustness to modeling error and measurement
noise. However, the definition of the degree of data fitting is not yet defined. This example
investigates the relationship between small posterior uncertainty and good data fitting.

Consider two single-parameter model classes with the likelihood functions shown in
Figure 6.1 for the same set of measurement. This figure shows also the log-likelihood func-
tions. In this case, p(D|θ, C2) = 4p(D|θ, C1) so ln p(D|θ, C2) = 2 ln 2 + ln p(D|θ, C1). With
the same prior distribution, the posterior PDFs and uncertainty of the parameter of these two
model classes are identical since the difference between the log-likelihood functions is a con-
stant. However, model class C2 provides better fitting to the data as its maximum likelihood
value is four times of that for C1:

p(D|θ�, C2) = 4p(D|θ�, C1) (6.1)
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Figure 6.1 Likelihood and log-likelihood functions

Therefore, the same level of posterior uncertainty can be associated with different levels of
data fitting. This example demonstrates that the degree of data fitting has no direct relationship
with the posterior uncertainty of the parameters. Furthermore, in this example, the normalizing
constant of C1 will be four times of that with C2 and it will be demonstrated in the following
sections that the normalizing constant plays an important role in model class selection.

Example. Dow Jones Industrial Average
Another issue to address is whether good data fitting implies good modeling. With the data
of 2008, let’s attempt to use the following empirical model for the daily closing values of the
Dow Jones Industrial Average (DJIA):

ln DOW(n) = b0 + b1 exp (sin n) + b2 exp (sin 2n) + · · · + b252 exp (sin 252n) (6.2)

where DOW(n) is the closing value of the index on the nth trading day starting from 2/1/2008
and there were 253 trading days in this year. The logarithm used on the left hand side guarantees
a positive value of the model output. In this case, the unknown coefficients bl, l = 0, 1, . . . , 252,
can be determined by the 253 data points and they are b0 = 22.28, b1 = −0.0169, b2 =
−0.0157, b3 = 0.0035, b4 = −0.0053, . . ., etc. This curve fits perfectly the closing values of
all trading days in 2008 since there exists a one-to-one linear mapping from the 253 coefficients
to the 253 closing values. In other words, the fitting error is zero and the maximum likelihood
value is infinity with a perfect match. Furthermore, the posterior variances for all coefficients
are zero. However, this model over-fits the data. If it is used to regenerate the closing values
in any day of 2008, it will give perfect results. However, if this model is used for prediction,
the story will be very different and the results for 2009 are shown in logarithmic scale in
Figure 6.2 (This part was written in April 2009). The prediction goes all the way to 6.3 × 108

in mid April and then drops down to less than 1 point in mid June. Obviously, the prediction
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Figure 6.2 Prediction of the Dow Jones Industrial Average for 2009

by this model is not realistic even though it matches perfectly the data in the past. Assuming
that the closing value of a day is changed for some reason, the identified coefficients and
hence the prediction will be altered due to the change but the new model still fits perfectly the
measurements. Figure 6.3 shows the prediction by the model trained with the measurement
of 2008 with the only difference on the 202nd trading day with 2% reduction. With this mild
perturbation of the measurements (only 2% change in one data point out of the 253 data
points), a visible change in the prediction can be observed, especially in the neighborhoods
of the local maxima and minima. In other applications where measurement noise exists in all
data points, the measurement error will contribute substantially to the identification results of
the model parameters and hence the prediction of the over-fitted model. In conclusion, a large
maximum likelihood value implies good data fitting but not necessarily a suitable model class
for identification if the identified model is to be used for future prediction. Therefore, it is not
appropriate to select the class of models for future prediction simply by choosing the one with
the largest maximum likelihood value.

6.1.1 Sensitivity, Data Fitness and Parametric Uncertainty

Posterior uncertainty is a measure of the spread of the product of the prior distribution and
the likelihood function. As shown previously in the 4th example of Section 2.1.6 (Chapter 2)
a small posterior uncertainty is possible for poor data fitting. In this case, the normalizing
constant will be large.
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Figure 6.3 Prediction of the Dow Jones Industrial Average for 2009 with small perturbations of the
data

On the other hand, the sensitivity is the change of model output X due to parameter pertur-
bation and it can be quantified by the following matrix:

J = ∂X
∂θ

(6.3)

The slope of the posterior PDF depends on the sensitivity, which controls the rate of the change
of the model output due to perturbation of the parameters. On the other hand, the posterior
uncertainty of the parameters is controlled by the decaying rate (slope) of the posterior PDF in
the neighborhood around the optimal point. Therefore, it is particularly important to investigate
the sensitivity of a model around the optimal parameters.

If a model class is utilized for future prediction, it is desirable to obtain a robust model
class that fits the data well even with errors in the parameters. In this case, the maximum
likelihood value has to be large and the likelihood value remains large in a sufficiently large
neighborhood of the most plausible parameter values. Therefore, the topology of the likelihood
function around the maximum is flat and the sensitivity is low. Figure 6.4 shows schematically
two likelihood functions to demonstrate these relationships. The two likelihood functions are
assumed to be obtained with the same set of measurements but with different model classes.
Model class C1 obviously has a larger maximum likelihood value than C2, indicating that the
optimal model in C1 fits the data better than that of C2. Furthermore, the posterior uncertainty
of the parameter in C1 is also smaller than that of C2 if the same prior distribution is used.
However, if the optimal models are to be used for future prediction, model class C2 is more
reliable since it has a larger parameter range that provides satisfactory fitting to the data so it
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Figure 6.4 Schematic plot for demonstration of sensitivity

is more robust. On the other hand, the maximum likelihood margin of C1 may not be sufficient
to compensate if the model parameter has a tiny error. Therefore, a reliable model class should
have a reasonable tradeoff between the data fitting capability and the robustness to model error.
This example also demonstrates that even for the same number of parameters, the model class
with a larger maximum likelihood value is not necessarily the better for identification. Table 6.1
shows the four combinations of data fitting capability and posterior uncertainty. It is desirable
to use a model class that has a high value of the maximum likelihood and a large posterior
uncertainty so that efficient and robust identification performance can be expected but this is
difficult to achieve. Data fitting capability can be easily enhanced by adding free parameters
but this will inevitably degrade the robustness of the model class. Therefore, a suitable model
class should possess a reasonable balance between these two important properties.

Table 6.1 Identification results for one set of data and frequency range (0, 1.2�̃]

Posterior uncertainty\
Maximum likelihood value High Low

Large Efficient and robust Poor modeling
Small Efficient but fragile Poor modeling

In the next section, the Bayesian model class selection method is introduced for quantifica-
tion and selection of model classes. It will be discussed for the globally identifiable case and
the general case. The Ockham factor is introduced and it serves as the penalty for a complicated
model, which appears naturally from the evidence. Computational issues will be discussed and
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the transitional Markov Chain Monte Carlo (TMCMC) simulation method will be introduced.
Linear and nonlinear regression problems are presented in Section 6.3. Formulae will be given
for two special but popular choices of the prior distribution of the uncertain parameters. In
Sections 6.4 and 6.5, illustrative examples are presented for the determination of the number of
modes for modal identification of a building and the decision on the seismic attenuation empir-
ical relationship. Finally, prior distribution will be revisited and an interesting and inspirational
example will be given to conclude the book.

6.2 Bayesian Model Class Selection

LetD denote the input–output or output-only data from a physical system or phenomenon. The
goal is to use D to select the most plausible/suitable class of models representing the system
out of NC given classes of models C1, C2, . . . , CNC

. Since probability may be interpreted as a
measure of plausibility based on specified information [63], the probability of a class of models
conditional on the set of dynamic data D is required. This can be obtained by using the Bayes’
theorem as follows:

P(Cj|D,U) = p(D|Cj,U)P(Cj|U)

p(D|U)
, j = 1, 2, . . . , NC (6.4)

where p(D|U) is the denominator is given by the law of total probability:

p(D|U) =
NC∑
j=1

p(D|Cj,U)P(Cj|U) (6.5)

and U expresses the user’s judgement on the initial plausibility of the model classes in terms of
the prior plausibilityP(Cj|U) on the model classesCj , j = 1, 2, . . . , NC. The prior plausibilities
are normalized in the same way as probabilities:

NC∑
j=1

P(Cj|U) = 1 (6.6)

In the context of decision theory, this prior plausibility can be utilized to assign different
weightings for model classes to take into account of other non-modeling factors, e.g., to
penalize model classes with heavier computational demands. However, this is not considered
in the scope of the book. The factor p(D|Cj,U) is called the evidence for the model class
Cj provided by the data D. It expresses how likely the data are obtained if the model class
Cj is assumed and plays an important role on model class selection. Since there is a certain
randomness in the measurement, the data are more typical if the evidence is large. In this case,
the identification results are more reliable by using the more representative data set. The user’s
preference U is irrelevant in p(D|Cj,U) and so it can be dropped from the notation because it
is assumed that Cj alone specifies the probability density function (PDF) for the data:

p(D|Cj,U) = p(D|Cj) (6.7)

In other words, Cj specifies not only a class of deterministic dynamic models but also the
probability descriptions for the prediction error and initial plausibility for each model in the



220 Bayesian Methods for Structural Dynamics and Civil Engineering

model class Cj [19]. Equation (6.4) shows that the most plausible model class is the one that
maximizes p(D|Cj)P(Cj|U) with respect to j.

The plausibility P(Cj|D,U) can be used not only for selection of the most plausible class
of models, but also for response prediction based on all the model classes. Let Q denote a
quantity to be predicted, e.g., first story drift. Then, the PDF of Q given the data D can be
calculated from the law of total probability as follows:

p(Q|D,U) ≈
NC∑
j=1

p(Q|D, Cj)P(Cj|D,U) (6.8)

rather than using only the most plausible model for prediction. This approximation is exact only
if the NC model classes provides independent predictions for the variable Q. For example, if two
of the model classes are identical (say C1 = C2), then its contribution will be ‘double counted.’
However, it will be computationally expensive to take into account of the correlations among
all the model classes, especially for large NC. However, this approximation still performs better
than using the most plausible model class alone in a normal situation.

On the other hand, if the plausibility P(C�|D,U) for the most plausible model class C� is
much larger than the plausibility of the others, then the above expression is approximated by:

p(Q|D,U) ≈ p(Q|D, C�) (6.9)

and it is sufficient to just use the most plausible model class for predicting the system behavior.
The evidence for Cj provided by the data D is given by the law of total probability:

p(D|Cj) =
∫

�j

p(D|θ, Cj)p(θ|Cj)dθ, j = 1, 2, . . . , NC (6.10)

where θ = θ(�j) is the parameter vector in the parameter space �j ⊂ RNj and defines each
model in Cj . The parameter vector θ depends on the model class Cj even though it is not
explicitly reflected in the symbol. This is done only for the purpose of simplifying the notation.
The prior PDF p(θ|Cj) is specified by the user and p(D|θ, Cj) is the likelihood function. The
parameter vectors θ are different for different model classes but this is not shown explicitly
in the symbol for a notation simplification purpose. Note that the evidence is equal to the
reciprocal of the normalizing constant in establishing the posterior PDF. Let’s revisit the 4th
example in Section 2.1.6 (Chapter 2). In this case, the normalizing constant is

κ0 = 2
√

πσ0 exp

[
(Q̂1 − Q̂2)2

4σ2
0

]

with σ2
0 = 0.01 and κ0 = 1.85 × 10173. If another model class C2 is used with σ2

0 reduced
to 0.005, then κ0 = 6.83 × 10346. Therefore, the first model class has a smaller normalizing
constant than the second one. Since the normalizing constant is the reciprocal of the evidence,
a smaller value of the normalizing constant associates with a larger evidence. Furthermore, it
implies that with this model class the probability of obtaining such data is higher. Therefore,
the identification result with this more representative data is more reliable.

In practice, direct calculation/numerical integration of the evidence integral in
Equation (6.10) is often computationally prohibitive. Consider a model class with only
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10 uncertain parameters. For each parameter, its range is partitioned into 20 intervals so there
are 2010 = 1024 × 1010 hyper-cubes in the parameter space for evaluation. For each cube,
computation of the likelihood function of a given set of parameters requires one system anal-
ysis. If it takes 10−4 s for each run, it requires 1024 × 106 s ≈ 32 years for the numerical
evaluation of the evidence integral. For practical problems, there are usually more uncertain
parameters and a finer discretization is necessary, so the computational demand will grow
drastically. Therefore, a more computationally feasible approach is needed.

6.2.1 Globally Identifiable Case

In globally identifiable cases [19], the posterior/updated PDF for θ given a large amount of
data D may be approximated accurately by a Gaussian distribution, so the evidence p(D|Cj)
can be approximated by using Laplace’s method for asymptotic expansion [197]:

p(D|Cj) ≈ p(D|θ�, Cj)p(θ�|Cj)(2π)
Nj
2 |Hj(θ�)|− 1

2 , j = 1, 2, . . . , NC (6.11)

where Nj is the number of uncertain parameters for the model class Cj . The optimal parameter
vector θ� maximizes p(θ|D, Cj) in the interior of �j and Hj(θ�) is the Hessian matrix of the
objective function:

J(θ) = − ln [p(D|θ, Cj)p(θ|Cj)] (6.12)

with respect to θ evaluated at θ�. Specifically, the (l, l′) component of the Hessian matrixHj(θ�)
is given by:

H(l,l′)
j (θ�) = ∂2

∂θlθl′
J(θ)

∣∣∣∣
θ=θ�

(6.13)

where θl is the lth component of the parameter vector θ. This matrix can be computed by the
finite difference method (Appendix A). Note that the solution in Equation (6.11) is exact if the
posterior PDF is Gaussian.

The maximum likelihood value p(D|θ�, Cj) in Equation (6.11) will be larger for those
model classes Cj that make the probability of the data D higher, that is, that give a better
fitting to the data. For example, if the likelihood function is Gaussian, then the largest value
of p(D|θ�, Cj) will be given by the model class Cj that gives the smallest least-squares fitting
to the data. As mentioned earlier, this likelihood function favors model classes with more
uncertain parameters. If the number of data points N in D is large, the likelihood value will
be the dominant one in Equation (6.11) because it increases exponentially with N, while the
other factors behave as N−0.5, as shown below. The remaining factors in Equation (6.11) are
called the Ockham factor by Gull [98]:

Oj = p(θ�|Cj)(2π)
Nj
2 |Hj(θ�)|− 1

2 (6.14)

This represents a penalty against complicated parameterization [98, 164], as demonstrated in
the following discussion.

Next, it is attempted to show that the Ockham factor decreases exponentially with the
number of uncertain parameters in the model class. For this purpose, consider an alternative
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expression for it, derived as follows. It is known that for a large number N of data points inD, the
updated PDF p(θ|D, Cj) is well approximated by a Gaussian PDF with mean θ� and covariance
matrix given by the inverse of the Hessian matrix Hj(θ�). The principal posterior variances
for θ, denoted by σ2

l with l = 1, 2, . . . , Nj , are therefore the inverse of the eigenvalues of this
Hessian matrix [19]. The determinant factor |Hj(θ�)|−0.5 in the Ockham factor can therefore be
expressed as the product of all the σl for l = 1, 2, . . . , Nj . Assume that the prior PDF p(θ|Cj)
is Gaussian with mean θη (most probable value a priori) and a diagonal covariance matrix
with variances

(
σ

η
l

)2
with l = 1, 2, . . . , Nj . The logarithm of the Ockham factor for the model

class Cj can therefore be expressed as:

ln Oj = ln

[
p(θ�|Cj)(2π)

Nj
2 |Hj(θ�)|− 1

2

]

≈ −
Nj∑
l=1

ln
σ

η
l

σl

− 1

2

Nj∑
l=1

(
θ�
l − θ

η
l

σ
η
l

)2
(6.15)

Since the prior variances will always be greater than the posterior variances if the data provide
any information about the model parameters in the model class Cj , all the terms in the first
summation in Equation (6.15) will be positive and so will the terms in the second summation
unless the posterior most probable value θ�

l just happens to coincide with the prior most
probable value θ

η
l . Thus, one might expect that the log-Ockham factor ln Oj will decrease if

the number of parameters Nj for the model class Cj is increased. This expectation is confirmed
by noting that the posterior variances are inversely proportional to the number of data points
N in D, so the dependence of the log-Ockham factor is:

ln Oj = −1

2
Nj ln N + Rj (6.16)

where the remainder Rj depends primarily on the choice of prior PDF and is of order 1 for
large N. It is not difficult to show that this result holds for even more general forms of the prior
PDF than the Gaussian PDF used here.

In the special case if the likelihood function does not depend on a particular parameter
θL, the posterior uncertainty of this parameter will be controlled by its prior distribution. This
parameter is independent of other parameters for the prior distribution assumed so it represents
also one principle random variable and its posterior variance is equal to its prior variance (ση

L)2.
By Equation (6.15), the terms associated with θL are zero:

− ln
σ

η
L

σL

− 1

2

(
θ�
L − θ

η
L

σ
η
L

)2

= 0

since the updated value of this parameter is equal to the most probable value in the prior
distribution: θ�

L = θ
η
L. In this case, the inclusion of this ‘dummy’ parameter in the model class

has no effect on the Ockham factor or the likelihood function so there is no penalty for this
extra parameter in hampering the usage of this model class. If this model class is used for
future prediction, the extra ‘dummy’ parameter does not affect the model output even though
it is ‘model-unidentifiable.’ Therefore, it is reasonable that the Bayesian approach penalizes
complicated model classes according to the level of parametric uncertainty reduction but not
just the number of parameters.



Bayesian Model Class Selection 223

On the other hand, it follows from the Bayes’ Theorem that the exact expression for the
evidence is given by:

p(D|Cj) = p(D|θ�, Cj)p(θ�|Cj)

p(θ�|D, Cj)
(6.17)

A comparison of this equation and Equation (6.11) shows that the Ockham factor is approx-
imately equal to the ratio p(θ�|Cj)/p(θ�|D, Cj) which is always less than unity if the data
provide any information about the model parameters in the model class Cj . Indeed, for large
N, the negative logarithm of this ratio is an asymptotic approximation of the information about
θ provided by data D [147]. Therefore, the log-Ockham factor ln Oj removes the amount of
information about θ provided by D from the log-likelihood ln p(D|θ�, Cj) to give the log-
evidence, ln p(D|Cj).

The Ockham factor can also be interpreted as a measure of robustness of a model class. If
the updated PDF for the model parameters for a given model class is very ‘peaked,’ then the
ratio p(θ�|Cj)/p(θ�|D, Cj), and so the Ockham factor, is very small. However, a narrow peak
implies that response predictions using this model class will depend too sensitively on the
optimal parameters in θ�. Small errors in the parameter estimation will lead to large errors in
the response predictions. Therefore, a class of models with a small Ockham factor will not be
robust to measurement noise during parameter estimation, i.e., during selection of the optimal
model within the class.

To summarize, in the Bayesian approach to model selection, the model classes are ranked
according to p(D|Cj)P(Cj|U) for j = 1, 2, . . . , NC, where the most plausible class of models
representing the system is the one which gives the largest value of this quantity. The evidence
p(D|Cj) can be calculated for each class of models using Equation (6.11) where the likelihood
p(D|θ�, Cj) is evaluated using the methods presented in Chapters 2–5. The prior distribution
P(Cj|U) over all the model classes Cj , j = 1, 2, . . . , NC, can be used for other concerns, such
as computational demand. However, it is out of the scope of this book and uniform prior
plausibilities are chosen, leaving the Ockham factor alone to penalize the model classes.

Although the Bayesian method can be used to avoid a statistical trap in selecting a model
class, the most important issue is still on the fundamental understanding of the underlying
system or phenomenon so that good model class candidates can be constructed. Otherwise,
satisfactory identification results can never be anticipated among the poor candidates.

In practice, the likelihood value, Ockham factor and evidence may associate with a large order
for large N. Computational problems (i.e., giving either zero or infinity) may be encountered
for direct calculation and/or normalization of the plausibilities. To resolve this problem, one
first calculates the log-likelihood and the log-Ockham factor and hence the log-evidence,
denoted by ln p(D|C1), ln p(D|C2), . . . , ln p(D|CNC

). Instead of taking the exponential of the
log-evidence and then normalizing the plausibility, the maximum log-evidence is subtracted
from the log-evidence of each model class and then taking the exponential of this array. This
operation does not affect the relative plausibility between different model classes. Finally, the
plausibility of a model class can be obtained by normalizing this array:

P(Cj|D,U) = exp (ln p(D|Cj) − M)∑NC

j=1 exp (ln p(D|Cj) − M)
, j = 1, 2, . . . , NC (6.18)

where M = max
j

ln p(D|Cj) is the maximum log-evidence.
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6.2.1.1 Comparison with Akaike’s Approaches

The Akaike information criterion (AIC) [2] states that the best model class among the Cj ,
j = 1, 2, . . . , NC, is chosen by maximizing an objective function AIC(Cj|D) over j that is
defined by:

AIC(Cj|D) = ln p(D|θ�, Cj) − Nj (6.19)

where the maximum log-likelihood value is of order N, which is the number of data points
in D, while the penalty term is taken to be Nj , the number of adjustable parameters in the
model class Cj . Akaike actually stated his criterion as minimizing −2 ln p(D|θ�, Cj) + 2Nj

but the equivalent form in Equation (6.19) is more appropriate here. When the number of data
points is large, the first term will dominate. Akaike (1976) and Schwarz (1978) later developed
independently another version of the objective function, referred to as the Bayesian information
criterion (BIC), that is defined by [3, 232]:

BIC(Cj|D) = ln p(D|θ�, Cj) − 1

2
Nj ln N (6.20)

where now the penalty term increases with the number of data points N. Similarly, the original
version was to minimize −2 ln p(D|θ�, Cj) + Nj ln N.

The BIC can be compared directly with the logarithm of the evidence from Equation (6.11):

ln p(D|Cj) ≈ ln p(D|θ�, Cj) + ln Oj (6.21)

where the log-Ockham factor ln Oj is given by Equation (6.16). This shows that for large N, the
BIC agrees with the leading order terms in the log-evidence and so in this case it is equivalent
to the Bayesian approach using equal prior plausibilities for all of the P(Cj|U). However, in
practice, the Bayesian model class selection is especially useful when N is not large so the
selection of model class is difficult by the user’s judgement. Therefore, the BIC cannot replace
the Bayesian model class selection method if N is not sufficiently large since the residual term
has an important contribution. For example, consider a model class C1 that under-estimates the
response of a system by no less than 1%. Another model class C2 is constructed by duplicating
the output from C1 but having an extra term and an extra parameter θex:

Q2 = Q1(1 + 0.001U[|θex|])

where U(.) is the Heaviside unit step function that is unity if the argument is positive and zero
otherwise. Therefore, the extra factor in C2 rectifies the under-estimation of C1 although the
improvement is small. If this contributes to an increment of 0.1 of the maximum log-likelihood
value, both the AIC and BIC will prefer C1 as the improvement of the maximum log-likelihood
value in C2 is not sufficiently large to compensate the penalty induced by the extra parameter
(1.0 for AIC and 0.5 ln N for BIC). However, if the selected model class is used for future
prediction,C2 should be preferred since it improves the prediction even though the improvement
is small and the extra parameter is unidentifiable. The unidentifiability of θex implies that the
model output is insensitive to θex so it is robust to the perturbation of this parameter. If the
Bayesian model class selection method is used, C2 is preferred. The improvement of data fitting
by this extra factor increases the maximum likelihood value and also reduces the posterior
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uncertainty of the parameters (except for θex). Note that there is no information gained from
the measurement to trim down the uncertainty of the extra parameter from its prior PDF. On
the other hand, the increment of the maximum likelihood value overcomes the reduction of the
Ockham factor since they are proportional to

(
σ�

ε

)−N and
(
σ�

ε

)Nj−1, respectively. Here, Nj is
the number of uncertain parameters including θex, and N > Nj in a normal situation.

6.2.2 General Case

For the general case where the posterior PDF may not be approximated by Gaussian distri-
bution, the asymptotic expansion in Equation (6.11) is not valid. Since the posterior PDF is
normalized, the log-evidence can be rewritten as [55, 56]:

ln p(D|Cj) = [ln p(D|Cj)
] ∫

�j

p(θ|D, Cj)dθ

=
∫

�j

[
ln p(D|Cj)

]
p(θ|D, Cj)dθ

(6.22)

By using the Bayes’ theorem, the log-evidence can be expanded:

ln p(D|Cj) = ln p(D|θ, Cj) − ln
p(θ|D, Cj)

p(θ|Cj)
(6.23)

Then, Equation (6.22) can be expressed as the difference of two terms [55, 56]:

ln p(D|Cj) =
∫

�j

[ln p(D|θ, Cj)]p(θ|D, Cj)dθ −
∫

�j

[
ln

p(θ|D, Cj)

p(θ|Cj)

]
p(θ|D, Cj)dθ (6.24)

The first term is a measure of the average log-goodness of fit of the model classCj . It accounts for
the log-goodness of fit for different combinations of the parameters, weighted by the posterior
PDF, instead of the optimal parameters alone. An ideal model class should fit the data well
even with a reasonably small perturbation of the parameters from their optimal values. In the
special case if the likelihood function is of the Gaussian type and the prior PDF is relatively
flat, the posterior PDF is approximately Gaussian and the log-likelihood function takes the
following form:

ln p(D|θ, Cj) = ln p(D|θ�, Cj) − 1

2
(θ − θ�)T

[
Hj(θ�) − Hη

j (θ�)
]

(θ − θ�) (6.25)

whereHη
j (θ�) is the Hessian matrix of the negative logarithm of the prior distribution evaluated

at the posterior most probable parameters, but not the peak of the prior. The second term
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vanishes when θ = θ�. Then, the first term in Equation (6.24) is given by:

∫

�j

[ln p(D|θ, Cj)]p(θ|D, Cj)dθ

= ln p(D|θ�, Cj) − 1

2

∫

�j

(θ − θ�)THj(θ�)(θ − θ�)p(θ|D, Cj)dθ

+ 1

2

∫

�j

(θ − θ�)THη
j (θ�)(θ − θ�)p(θ|D, Cj)dθ

(6.26)

In order to evaluate the integrals on the right side, a transformation V : ψ → θ is introduced:

θ − θ� = Vψ (6.27)

where V ∈ RNj×Nj is a squared matrix that diagonalizes the Hessian matrix:

V−1Hj(θ�)V = D (6.28)

with a diagonal matrix D. Since the Hessian matrix is symmetric, a solution of Equation (6.28)
exists and a rigid rotation matrix V can be selected such that V−1 = VT and its determinant is
|V| = 1. By Equation (6.27), it can be shown that ψ is a zero-mean Gaussian with the covariance
matrix V−1H(θ�)−1V = D−1, which is diagonal. In other words, different components ψl and
ψl′ , l /= l′, are independent Gaussian random variables with variances 1/D(l,l) and 1/D(l′,l′),
respectively.

Since p(θ|D, Cj)dθ = p(ψ|D, Cj)dψ, the first integral on the right side of Equation (6.26)
can be evaluated:

∫

�j

(θ − θ�)THj(θ�)(θ − θ�)p(θ|D, Cj)dθ =
∫

�j

ψT VTHj(θ�)Vψp(ψ|D, Cj)dψ

=
∫

�j

ψT Dψp(ψ|D, Cj)dψ

=
Nj∑
l=1

D(l,l)
∫

�j

ψ2
l p(ψ|D, Cj)dψ

=
Nj∑
l=1

D(l,l)/D(l,l)

= Nj

(6.29)

Therefore, the first term on right hand side of Equation (6.24) is given by:

∫

�j

[ln p(D|θ, Cj)]p(θ|D, Cj)dθ = ln p(D|θ�, Cj) − Nj − Iη

2
(6.30)
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where the quantity Iη is defined as:

Iη ≡
∫

�j

(θ − θ�)THη
j (θ�)(θ − θ�)p(θ|D, Cj)dθ (6.31)

Note that Iη < Nj if the data contain any information for the model parameters. Otherwise,
Iη = Nj .

The second term in Equation (6.24) is the relative entropy between the posterior and prior
PDFs [148]. The relative entropy is a measure of the information gained about the parameters
given the data D. The log-evidence is equal to the average log-goodness of fit of the model
class, penalized by the measure of the information gained from the data. Small uncertainty
(e.g., small standard deviation) of the model parameters is the consequence that the model
output is highly sensitive to the model parameters and this is not necessarily a good model class
for future modeling/prediction. This term depends highly on the choice of the prior distribution
so there is no general closed-form solution for this integral. However, in the special case if
both the prior and posterior PDFs are Gaussian, it can be simplified as follows:

∫

�j

[
ln

p(θ|D, Cj)

p(θ|Cj)

]
p(θ|D, Cj)dθ

= 1

2
ln

Hj(θ�)

Hη
j (θη)

− 1

2

∫

�j

(
θ − θ�

)T Hj(θ�)
(
θ − θ�

)
p(θ|D, Cj)dθ

+ 1

2

∫

�j

(
θ − θη

)T Hη
j (θ�)

(
θ − θη

)
p(θ|D, Cj)dθ

= 1

2
ln

Hj(θ�)

Hη
j (θη)

− Nj

2
+ 1

2

∫

�j

(
θ − θη

)T Hη
j (θ�)

(
θ − θη

)
p(θ|D, Cj)dθ

(6.32)

where θη is the prior most probable parameter vector. Note that the Hessian matrices do not
depend on the point for evaluation for Gaussian distributions so Hj(θ�) = Hj and Hη

j (θη) =
Hη

j (θ�) = Hη
j . The last integral can be simplified as follows:

∫

�j

(
θ − θη

)T (Hη
j

) (
θ − θη

)
p(θ|D, Cj)dθ

=
∫

�j

(
θ − θ�

)T (Hη
j

) (
θ − θ�

)
p(θ|D, Cj)dθ

+ 2
∫

�j

(
θ − θ�

)T (Hη
j

) (
θ� − θη

)
p(θ|D, Cj)dθ

+
∫

�j

(
θ� − θη

)T (Hη
j

) (
θ� − θη

)
p(θ|D, Cj)dθ

= Iη + (θ� − θη
)T (Hη

j

) (
θ� − θη

)

(6.33)
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Therefore, the relative entropy is given by:

∫

�j

[
ln

p(θ|D, Cj)

p(θ|Cj)

]
p(θ|D, Cj)dθ

=1

2
ln

Hj

Hη
j

− Nj − Iη

2
+ 1

2

(
θ� − θη

)T (Hη
j

) (
θ� − θη

) (6.34)

By comparing Equations (6.30) and (6.34), the term (Nj − Iη)/2 appears in both and will be
cancelled. The penalty consists of two parts. The first one is represented by 0.5 ln Hj/Hη

j and
it is a measure of the reduction of the principle variances of the parameters due to the updating
process. For large N, this term is proportional to ln N since the Hessian matrix is proportional

to N. The second part is 0.5
(
θ� − θη

)T (Hη
j

) (
θ� − θη

)
and represents the distance between

the updated parameters and the nominal values. The expected value of this term is Nj/2 and
does not have a trend with N.

6.2.3 Computational Issues: Transitional Markov Chain Monte Carlo
Method

For general updated PDFs that may have complex topology (e.g., a model unidentifiable case),
asymptotic expansion is not applicable and numerical simulation is necessary to evaluate the
evidence integral. With a large number of data points, the problem may not necessarily be
globally identifiable but the posterior PDFs are often concentrated in a region with small
volume. Therefore, direct application of the Markov Chain Monte Carlo (MCMC) simulation
algorithm encounters difficulties of having too many repeating samples. In order to resolve this
problem, the transitional Markov Chain Monte Carlo simulation algorithm [54] was developed
by extending the concept of the adaptive Markov Chain Monte Carlo simulation procedure
introduced in Chapter 2 [17]. This is a method for sampling the posterior PDF of a model class
C in an adaptive manner. First, sampling is performed for a sequence of un-normalized kernel
sampling densities, P (s), s = 0, 1, . . . , s0, given by:

P (s)(θ) = p(D|θ, C)βsp(θ|C) (6.35)

where the tempering parameter βs increases monotonically with s such that the starting value
is β0 = 0 and the target value is βs0 = 1. It is not necessary for normalization since the MCMC
algorithm requires only the relative probability density between two different parameter
vectors. Therefore, the intermediate PDFs evolve gradually from the prior PDF to the pos-
terior PDF. Samples of the model parameters are generated according to each intermediate
PDF, P (s), s = 0, 1, . . . , s0. The algorithm proceeds as follows.

The resampling weighting for each sample is the ratio of the intermediate PDFs for the sth
and (s − 1)th levels, evaluated at θ(s−1)

n :

w
(
θ(s−1)
n

)
= p(D|θ(s−1)

n , C)βsp(θ(s−1)
n |C)

p(D|θ(s−1)
n , C)βs−1p(θ(s−1)

n |C)
= p(D|θ(s−1)

n , C)βs−βs−1 (6.36)
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For large N, the samples θ(s−1)
n , n = 1, 2, . . . , N, are distributed according to the intermediate

PDF for the (s − 1)th level that is given by normalizingP (s−1). Use Ŵs to denote the expectation
of the weighting w(θ(s−1)) and it can be estimated by the sample average of w(θ(s−1)

n ), n =
1, 2, . . . , N:

∫
� p(D|θ, C)βsp(θ|C)dθ∫

� p(D|θ, C)βs−1p(θ|C)dθ
≈ 1

N

N∑
n=1

w
(
θ(s−1)
n

)
≡ Ŵs (6.37)

Finally, the evidence p(D|C) can be estimated by the product of Ŵs, s = 1, 2, . . . , s0:

p(D|C) =
∫
� p(D|θ, C)p(θ|C)dθ∫

� p(θ|C)dθ

=
∫
� p(D|θ, C)βs0 p(θ|C)dθ∫
� p(D|θ, C)β0p(θ|C)dθ

=
∫
� p(D|θ, C)β1p(θ|C)dθ∫
� p(D|θ, C)β0p(θ|C)dθ

∫
� p(D|θ, C)β2p(θ|C)dθ∫
� p(D|θ, C)β1p(θ|C)dθ

· · ·
∫
� p(D|θ, C)βs0 p(θ|C)dθ∫

� p(D|θ, C)βs0−1p(θ|C)dθ

≈
s0∏

s=1

Ŵs

(6.38)

6.3 Model Class Selection for Regression Problems

In Chapter 2, Section 2.4, parametric identification was introduced for linear and nonlinear
regression problems. In this section, the Bayesian model class selection is applied to these
problems. In order to smooth the presentation, some of the equations from Section 2.4 are
repeated in this section.

6.3.1 Linear Regression Problems

A general linear regression problem can be represented by the following relationship:

Q(x; b, Cj) =
Nb∑
l=1

blxl (6.39)

where Nb is the total number of uncertain coefficients, bls. The measurement of Q is denoted
by y and is modeled as:

y = Q(x; b, Cj) + ε (6.40)

where ε is a zero-mean Gaussian random variable with variance σ2
ε and is used to represent the

measurement noise and modeling error. The uncertain parameters in θ = [bT , σ2
ε ]T include
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the coefficients bls and the prediction-error variance σ2
ε so:

Nj = Nb + 1 (6.41)

The variables x1, x2, . . . , xNb
in x are the measured variables in establishing the regression

relationship.
The dataD include the measurement of x and the corresponding values of y. By assuming that

the prediction errors in different records are statistically independent, the likelihood function
is obtained:

p(D|θ, Cj) = (2π)−
N
2 σ−N

ε exp

[
− N

2σ2
ε

Jg(b;D, Cj)

]
(6.42)

where N is the total number of measured records. The goodness-of-fit function Jg(b;D, Cj)
represents the degree of data fitting and is given by:

Jg(b;D, Cj) = 1

N

N∑
n=1

[
y(n) −

Nb∑
l=1

blxl(n)

]2

(6.43)

A smaller value of this function implies better fitting to the data. Two special but popular
choices of prior distributions of the uncertain parameters are now discussed.

6.3.1.1 Independent Uniform Prior

With a uniform prior PDF of the coefficients, the optimal coefficient vector b� can be obtained
by minimizing Jg(b;D, Cj) if the range of the uniform distribution is sufficiently large. This
can be done by solving the linear algebraic equation ∂Jg(b;D, Cj)/∂b = 0, and the updated
coefficient vector is readily obtained:

b� = A−1

⎡
⎢⎢⎢⎢⎢⎣

1
N

∑N
n=1 x1(n)y(n)

1
N

∑N
n=1 x2(n)y(n)

...
1
N

∑N
n=1 xNb

(n)y(n)

⎤
⎥⎥⎥⎥⎥⎦

(6.44)

where A is an Nb × Nb symmetric matrix given by:

A = 1

N

N∑
n=1

x(n)x(n)T (6.45)

Furthermore, the updated fitting-error variance σ2
ε

�
can be obtained by maximizing the product

of the prior PDF and the likelihood function, which is proportional to the posterior PDF. It is
simply given by the minimum ‘goodness of fit value:’

σ2
ε

� = min
b

Jg(b;D, Cj) = Jg(b�;D, Cj) (6.46)
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Therefore, the maximum likelihood value is:

p(D|θ�, Cj) = (2πσ2�
ε )−

N
2 exp

(
−N

2

)
(6.47)

For large N, the posterior PDF p(θ|D, Cj) is approximately Gaussian centered at the optimal
parameter θ� = [b�T , σ2�

ε ]T . Therefore, the uncertainty of the parameter estimates can be
represented by the covariance matrix given by �θ = Hj(θ�)−1, where the Hessian matrix
Hj(θ�) is given by:

Hj(θ�) = N

[
(σ2�

ε )−1A 0Nb×1

01×Nb

1
2 (σ2�

ε )−2

]
(6.48)

Finally, by using the asymptotic expansion in Equation (6.11), the evidence p(D|Cj) can be
approximated by:

p(D|Cj) ≈ p(θ�|Cj) exp

(
−N

2

)
π

Nj−N

2 (
√

2σ�
ε )Nj+1−N

√
NNj |A|

(6.49)

It has to be noted that the above formula is correct if the uniform prior distribution has a
sufficiently large range to cover all the significant region of the likelihood function. In the
special case if the number of uncertain coefficients is equal to the number of data points, i.e.,
Nb = N, over-fitting is anticipated. In this case, Nj − N = 1 as the prediction-error variance
is also an uncertain parameter. Since the optimal model in this model class matches with the
data perfectly, σ2

ε = 0 and the evidence is zero:

p(D|Cj) ≈ p(θ�|Cj) exp

(
−N

2

)
2
√

πσ2�
ε√

NN+1|A|
= 0

By using Equation (6.14) with Equation (6.48), the Ockham factor is given by:

Oj = p(θ�|Cj)|A|− 1
2

(
π

N

)Nj
2 (√

2σ�
ε

)Nj+1
(6.50)

6.3.1.2 Gaussian Prior for the Coefficients and Inverse Gamma Distribution
for the Prediction-error Parameter

Another popular choice of the prior PDF for the uncertain parameters is a Gaussian distribution
for the coefficients and is discussed in this section. First, the prior PDF is assumed separable:

p(θ|Cj) = p
(

b, σ2
ε |Cj

)
= p(b|Cj)p

(
σ2

ε |Cj

)
(6.51)

For the uncertain coefficients in b, Gaussian prior PDFs are taken with mean bη and covariance
matrix V:

p(b|Cj) = (2π)−
Nb
2 |V|− 1

2 exp

[
−1

2
(b − bη)T V−1(b − bη)

]
(6.52)
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On the other hand, the prior distribution for prediction-error variance is taken to be the conjugate
prior and is the inverse Gamma distribution:

p(σ2
ε |Cj) = β

α0
0

σ
2(α0+1)
ε �(α0)

exp

(
−β0

σ2
ε

)
(6.53)

Then, the product of the prior PDF and likelihood function is given by:

p(θ|Cj)p(D|θ, Cj) = (2π)−
Nb+N

2 |V|− 1
2

β
α0
0

�(α0)
σ−2(α0+1)−N

ε exp

(
−β0

σ2
ε

)

× exp

⎡
⎣−1

2
(b − bη)T V−1(b − bη) − 1

2σ2
ε

N∑
n=1

(
y(n) −

Nb∑
l=1

blxl(n)

)2⎤
⎦

(6.54)

Given any positive value of σ2
ε , the conditional optimal coefficient vector b� can be ob-

tained by minimizing the posterior PDF p(θ|D, Cj), or equivalently p(θ|Cj)p(D|θ, Cj) con-
ditional on the value of σ2

ε . This can be done by solving the linear algebraic equation
∂p(θ|Cj)p(D|θ, Cj)/∂b = 0 and the solution is given by:

b�
(
σ2

ε

)
=
(
Nσ−2

ε A + V−1
)−1

⎛
⎜⎜⎜⎜⎜⎝

Nσ−2
ε

⎡
⎢⎢⎢⎢⎢⎣

1
N

∑N
n=1 x1(n)y(n)

1
N

∑N
n=1 x2(n)y(n)

...
1
N

∑N
n=1 xNb

(n)y(n)

⎤
⎥⎥⎥⎥⎥⎦

+ V−1bη

⎞
⎟⎟⎟⎟⎟⎠

(6.55)

where the matrix A has the same form as Equation (6.45). It can be easily shown that the matrix
Nσ−2

ε A + V−1 is invertible.
For a given coefficient vector b, the conditional optimal prediction-error variance σ2�

ε can
be found by solving ∂p(θ|Cj)p(D|θ, Cj)/∂σ2

ε = 0 and is readily obtained:

σ2
ε

�
(b) = NJg(b;D, Cj) + 2β0

N + 2(α0 + 1)
(6.56)

The availability of the conditional optimal expressions in Equations (6.55) and (6.56) allows
one to search for the optimal parameters by the following iterative algorithm. First, take σ2

ε = 0
in Equation (6.55) to compute the conditional optimal values for the uncertain coefficients.
Then, by using Equation (6.56), the conditional prediction-error variance can be computed.
By using this value of the prediction-error variance, the conditional optimal for the uncertain
coefficients can be updated. By repeating the last two steps, the updated uncertain parameters
can be obtained until convergence is achieved.

The posterior PDF has some tractable properties that can be used for evaluation of the
evidence integral. The conditional PDF p(b|D, Cj, σ

2
ε ) is Gaussian with mean b�(σ2

ε ) and
covariance matrix (Nσ−2

ε A + V−1)−1. Furthermore, the conditional PDF p(σ2
ε |D, Cj, b)

follows the inverse Gamma distribution IG(α, β), where the shape and scale parameters
are given by α = N/2 + α0 and β = NJg(b;D, Cj)/2 + β0. Furthermore, for large N, the



Bayesian Model Class Selection 233

following approximation can be taken: (Nσ−2
ε A + V−1)−1 ≈ σ2

ε /NA−1 and the marginal
distribution of the prediction-error variance is approximately the inverse Gamma distribution
IG(α�, β�) where the shape and scale parameters are given by:

α� = N − Nb

2
+ α0

β� = N

2
Jg(b�;D, C) + β0

(6.57)

These properties can be used to obtain the closed-form solution of the evidence integral
for the linear regression model classes. By using Equation (6.51), the evidence integral in
Equation (6.10) can be rewritten as:

p(D|Cj) =
∫ ∞

0

[∫

B

p(D|θ, Cj)p(b|Cj)db
]

p(σ2
ε |Cj)dσ2

ε (6.58)

where B is the domain for the formula coefficient vector b. Use I1(σ2
ε ; Cj) to denote the integral

on B:

I1(σ2
ε ; Cj) ≡

∫

B

p(D|θ, Cj)p(b|Cj)db (6.59)

This integral has a closed-form solution:

I1(σ2
ε ; Cj) = (

√
2πσε)−N

∣∣∣Nσ−2
ε AV + INb

∣∣∣
− 1

2

× exp

[
−1

2
(b� − bη)T V−1(b� − bη) − N

2σ2
ε

Jg(b�;D, Cj)

]

(6.60)

Then, numerical integration can be applied to evaluate the one dimensional integral of the
evidence:

p(D|Cj) =
∫ ∞

0
I1(σ2

ε ; Cj)p(σ2
ε |Cj)dσ2

ε (6.61)

However, for large N, the posterior PDF will be dominated by the likelihood function and the
approximation Nσ−2

ε AV + INb
≈ Nσ−2

ε AV is accurate. Then, I1(σ2
ε ; Cj) can be approximated

by:

I1(σ2
ε ; Cj) ≈ σ

−N+Nb
ε√

(2π)NNNb |A| · |V| exp

[
−1

2
(b� − bη)T V−1(b� − bη) − N

2σ2
ε

Jg(b�;D, Cj)

]

(6.62)

Finally, the evidence of model class Cj is readily obtained by integrating the prediction-error
variance:

p(D|Cj) ≈ (β0)α0�(α�)√
(2π)NNNb |A| · |V|(β�)α�

�(α0)
exp

[
−1

2
(b� − bη)T V−1(b� − bη)

]
(6.63)

where α� and β� are given by Equation (6.57).
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6.3.2 Nonlinear Regression Problems

With the same fashion of Equation (6.39), the predictive formula in a nonlinear regression
model class takes the following general form:

Q(x; b, n, Cj) = f (x; n) +
Nb∑
l=1

blfl(x; n) (6.64)

where f and fl, l = 1, 2, . . . , Nb, are prescribed nonlinear functions with uncertain coefficients
n ∈ RNn . Again, the measurement is assumed to be different from its model predicted value
due to measurement noise and modeling error: y = Q(x; b, n, Cj) + ε. The random variable
is also modeled as a zero-mean Gaussian random variable with variance σ2

ε . Given a number
of measurements of x and y, the likelihood function takes the same form as in Equation (6.42)
but the goodness-of-fit function is given by:

Jg(b;D, Cj) = 1

N

N∑
n=1

[
y(n) − f (x; n) −

Nb∑
l=1

blfl(x; n)

]2

(6.65)

The optimal parameters can be solved by the iterative method introduced in Chapter 2,
Section 2.4.2. By observing Equations (6.64) and (6.65), the integrand of the evidence integral
has a complex topology for the nonlinear model classes. Since a closed-form solution is not
available in general, the evidence integral has to be evaluated numerically, e.g., by Monte
Carlo simulation. However, direct Monte Carlo simulation is inefficient for large N and
Nj since the region of significant probability may be very concentrated with a complicated
topology. Therefore, the following procedure is introduced to reduce the dimension of the
Monte Carlo simulation and this increases the volume of the high probability density region
compared to the sample space.

Here, a separable prior distribution is considered:

p(θ|Cj) = p(b, n, σ2
ε |Cj) = p(b|Cj)p(n|Cj)p(σ2

ε |Cj) (6.66)

Then, the evidence integral for a nonlinear model class is given by:

p(D|Cj) =
∫

N
I2(n; Cj)p(n|Cj)dn (6.67)

where N is the integration domain of the uncertain parameters in n and I2(n; Cj) is defined as
follows:

I2(n; Cj) =
∫ ∞

0

∫

B

p(D|θ, Cj)p(b, σ2
ε |Cj)dbdσ2

ε (6.68)

where B is the integration domain of the vector b. For a uniform prior PDF, this integral can
be evaluated with the same approach as in Equation (6.49):

I2(n; Cj) ≈ p(θ�|Cj) exp

(
−N

2

)
(
√

2πσ�
ε )Nj−N

√
2NNj |A|

(6.69)
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In the case with a Gaussian prior for b and an inverse Gamma prior for σ2
ε , this integral can be

evaluated with the same approach as in Equation (6.63):

I2(n; Cj) ≈ (β0)α0�(α�)√
(2π)NNNb |A| · |V|(β�)α�

�(α0)
exp

[
−1

2
(b� − bη)T V−1(b� − bη)

]
(6.70)

Since the analytic solutions for I2(n; Cj) are available, the dimension of the original evidence
integral is reduced from Nb + Nn + 1 to Nn and can be estimated by direct Monte Carlo
simulation:

p(D|Cj) = Ep(n|Cj)
[
I2(n; Cj)

] = 1

Ns

Ns∑
s=1

I2(n(s); Cj) (6.71)

with independent samples n(s), s = 1, 2, . . . , Ns, simulated according to the prior PDF p(n|Cj).

6.4 Application to Modal Updating

A twenty-story building and its response measurements are considered in this example. The
Bayesian model class selection approach is applied to choose the optimal number of modes
for a linear model. It is assumed that this building has a uniformly distributed floor mass and
interstory stiffness over its height. The stiffness to mass ratios K̃l/Ml, l = 1, 2, . . . , 20, are
chosen to be 1500 s−2 so that the fundamental frequency of the building is 0.4722 Hz. Rayleigh
damping is assumed, i.e., the damping matrix C is given by:

C = α1M + α2K (6.72)

where α1 = 0.044 48 s−1 and α2 = 0.001 69 s so that the damping ratios for the first two modes
are 1.00%. The structure is assumed to be subjected to a wide-band random ground motion,
which can be adequately modeled as Gaussian white noise with spectral intensity Sf0 = 10−5

m2 s−3. The governing equation is given by:

Mẍ + Cẋ + Kx = −[M1, M2, . . . , M20]T ẍg (6.73)

where ẍg is the ground acceleration, and Ml is the lth floor mass, l = 1, 2, . . . , 20.
The data D consist of the simulated absolute acceleration at the top floor with 5% noise

added over a time interval T = 60 s, using a sampling interval �t = 0.01 s. The added noise is
simulated using spectral intensity Sε0 = 4.15 × 10−8 m2 s−3. Figure 6.5 shows the response
spectrum obtained by Equation (3.25) and five modes clearly show up. However, it is difficult to
determine the number of significant modes in the spectrum. Therefore, modal models with five
to nine modes are considered. Each model class Cj , j = 1, 2, . . . , 5, consists of a linear modal
model with m = j + 4 modes and the uncertain parameters are the modal frequencies, the two
Rayleigh damping coefficients, the modal participation factors, and the spectral intensity Sε0
of the prediction error at the observed degree of freedom. Even though the mass and stiffness
matrices are unknown, the damping ratios satisfy the following relationship for the Rayleigh
damping model [58]:

ζm = α1

2�m

+ α2�m

2
(6.74)
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Figure 6.5 Measured spectrum of the building

Independent prior distributions for the parameters are taken as follows: a Gaussian distri-
bution for the natural frequencies with mean 0.5(2m − 1) Hz and a coefficient of variation
10% for the mth mode. Furthermore, the Rayleigh coefficients, the modal participation factor
and the spectral intensity of the prediction error are assumed to be uniformly distributed over
a sufficiently wide range to let the likelihood function determine their values. Note that the
ranges of these distributions do not affect the model class selection results since they influence
all modal models in the same way. Therefore, the computation of the Ockham factor and plau-
sibility will exclude the prior PDF of these parameters but the one for the modal frequencies
will still be included.

The Bayesian spectral density approach in Chapter 3 is used for parametric identification.
The spectral density estimator is utilized up to 8 Hz to include all the peaks so Nω = 480.
Table 6.2 shows the optimal modal frequencies for model classes with different number of
modes. There is in general no difficulty in identifying the first five modes but it is not the

Table 6.2 Optimal modal frequencies (in Hz) of the building

j, m �1 �2 �3 �4 �5 �6 �7 �8 �9

Exact 0.4722 1.414 2.347 3.267 4.167 5.043 5.889 6.701 7.474
j = 1, m = 5 0.4895 1.418 2.357 3.276 4.169 — — — —
j = 2, m = 6 0.4910 1.417 2.352 3.274 4.189 5.731 — — —
j = 3, m = 7 0.4913 1.413 2.359 3.283 4.166 5.063 5.916 — —
j = 4, m = 8 0.4861 1.418 2.350 3.272 4.167 5.063 5.892 7.389 —
j = 5, m = 9 0.4883 1.418 2.359 3.275 4.166 5.046 5.865 6.611 7.429
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Table 6.3 Plausibilities of models with different number of modes based on data

j, m ln p(D|θ�, Cj) ln Oj ln p(D|Cj) P(Cj|D,U)

j = 1, m = 5 4821.7 −88.66 4733.0 0.00
j = 2, m = 6 4837.1 −100.0 4737.1 0.00
j = 3, m = 7 4873.6 −117.1 4756.5 1.00
j = 4, m = 8 4883.6 −130.6 4753.0 0.00
j = 5, m = 9 4895.5 −150.5 4745.0 0.00

case for the higher modes in some of the modal models. Table 6.3 shows the values of the
log-maximum likelihood value, the log-Ockham factor, the log-evidence and the plausibility
of each model class, calculated from Equation (6.4) using the evidence for each model from
Equation (6.11) and equal prior plausibilities P(Cj|U) = 1/5. It is no wonder that the maximum
log-likelihood value increases with an increasing number of modes used in a model class but
the log-Ockham factor goes in an opposite direction. It turns out that using seven modes is
optimal. Figure 6.6 shows the spectrum estimated directly from the data (zigzag curve) and
the optimal model spectrum using seven modes (smoother curve). The optimal model using
seven modes fits the measured spectrum very well. Furthermore, all the seven optimal modal
frequencies are very close to their target values, but it is not the case for using five or six
modes. It was found that if the AIC is used, a model class with an extra parameter is preferred
only if its log-likelihood is increased by no less than 1.0. In this case, nine modes are optimal
because the penalty term is too small compared to the changing of the log-likelihood term in
Equation (6.19). On the other hand, according to the BIC in Equation (6.20), a model class with
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Figure 6.6 Spectrum estimated from the measurements and from the optimal model with seven modes
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an extra parameter is preferred only if its log-likelihood is increased by no less than 0.5 ln N,
which is 3.087 in this case. The BIC also favors the nine-mode model class. However, judging
from the measured spectrum, it is more reasonable to use the seven-mode model as the eighth
and ninth modes are not evident.

6.5 Application to Seismic Attenuation Empirical Relationship

6.5.1 Problem Description

Prediction of peak ground acceleration (PGA) has received great attention in the societies
of civil engineering, earthquake engineering and seismology in the previous decades. A
significant amount of work can be found in predicting the PGA by using the magnitudes
of earthquakes, station-to-hypocenter distances, and the properties of the site foundations
[27–29, 33, 34, 125, 126, 175]. In particular, the Boore–Joyner–Fumal seismic attenuation for-
mula is a well-known regression model for estimation of the PGA and is given by [27, 28]:

log10 PGA = b1 + b2(M − M0) + b3(M − M0)2 + b4r + b5 log10 r + b6GB + b7GC

(6.75)

where M is the moment magnitude of an earthquake [99], M0 is a shifting constant and M0 = 6
was used in Boore et al. [27, 28], r is the observation station-to-hypocenter distance (in km),
GB and GC are site foundation classification variables, GB = 1 for class B and 0 otherwise,
and GC = 1 for class C and 0 otherwise [27, 28] (the classification of foundation will be
discussed further in Section 6.5.3.1), and ε is a zero-mean Gaussian random variable to model
the predictive/fitting error. In this model, the parameters to be identified are the coefficients bls
and the standard deviation σε for the predictive/fitting error ε and they can be estimated by the
maximum likelihood method with strong-motion records.

In the literature Shi and Shen [235], Wang et al. [270], Wong et al. [273] and Zheng and
Wong [302], the Crouse–McGuire model [65] was used for the attenuation model with the
strong-motion records from different areas of China and this model has essentially a different
functional form from Equation (6.75):

ln PGA = b1 + b2M + b3 ln [r + n1 exp (n2M)] (6.76)

where the variables M and r are defined in the same way as in Equation (6.75). Note the
predictive models in Equations (6.75) and (6.76) are both empirical models. It is reasonable
to speculate if better results can be obtained by adding/erasing terms on these models or even
by considering a different functional form. A good predictive model class should have good
capability of fitting the strong-motion records and otherwise be insensitive to observation and
modeling error. If the number of free parameters in a model class is very large, this model class
possesses a powerful data fitting capability but may become very sensitive to the measurement
noise, referred to as over-fitting. This is because the identified parameters of this model class
depend highly on the details of the data (including the measurement noise and modeling errors)
and it may cause large errors in future predictions. In this section, the regression formula given
in Boore et al. [27, 28] is examined. Thirty two model classes are constructed by including
subsets of terms in the regression equation (Equation (6.75)). In this section, the Bayesian
model class selection approach is used to select among these thirty two model classes. It
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considers the plausibility of each model class conditional on the database. The plausibility of
a model class can be factorized as a product of the maximum likelihood and a measure of the
robustness of the model class (namely the Ockham factor). The Ockham factor penalizes those
model classes that are over-parameterized and therefore prone to error due to the noise in the
data set. Therefore, the most plausible model class should have the optimal tradeoff between
the data fitting capability and the robustness to measurement noise and modeling error. A
database of 249 strong-motion records from the China Earthquake Data Center [50] is utilized
for this study.

6.5.2 Selection of the Predictive Model Class

In order to examine the suitability of the predictive model class in Equation (6.75) and to
propose the most suitable one, model class candidates are constructed. Here, predictive model
classes are considered in a similar functional form of Equation (6.75) but to include different
combinations of terms in different model classes. First of all, the constant b1 is necessary
to serve as a scaling factor of the PGA for any model class so all model classes contain b1.
As will be discussed later in Section 6.5.3.1 that only strong-motion records with moment
magnitude M > 3.5 are utilized, M0 = 3.5 is taken in this study. For the site properties, the
terms b6GB and b7GC are either included or excluded together in a model class. Therefore,
there are 25 = 32 model class candidates, namely C1, C2, . . ., C32.

Let D denote the data that include the measured PGA and the corresponding earthquake
magnitude, observation station-to-hypocenter distance and site foundation properties.

The uncertain model parameter vector is:

θ = [bT , σ2
ε ]T (6.77)

that includes the uncertain coefficients and the prediction-error variance. Given a predictive
model classCj , the optimal parameter vector θ� for a given model class is the one that maximizes
the posterior PDF p(θ|D, Cj), which provides a measure of the relative plausibility of the values
of the parameters in θ. By the Bayes’ theorem, the posterior PDF for the parameters θ is given
by:

p(θ|D, Cj) = κ1p(θ|Cj)(2π)−
N
2 σ−N

ε exp

[
− N

2σ2
ε

Jg(b;D, Cj)

]
(6.78)

where κ1 is a normalizing constant, N is the number of strong-motion records in D and p(θ|Cj)
is the prior PDF of the model parameters expressing the user’s judgment about the relative
plausibility of the values of the predictive model parameters without using the data. In this
study, a uniform prior PDF is used for not biasing the parametric identification results prior to
the data. The goodness-of-fit function Jg(b;D, Cj) is given by:

Jg(b;D, Cj) = 1

N

N∑
n=1

[
log10 PGAo(n) − log10 PGA(x(n); b, Cj)

]2

(6.79)

where PGA(x(n); b, Cj) is the model predicted PGA of the nth record and PGAo(n) is its
corresponding observed value. The most probable model parameter vector θ� is obtained by
maximizing the posterior PDF p(θ|D, Cj) in Equation (6.78). This is equivalent to minimizing
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the goodness-of-fit function Jg(b;D, Cj) over all the parameters in b because a uniform prior
PDF is used. A predictive formula in any model class Cj , which includes subsets of terms of
Equation (6.75), can be written as:

log10 PGA(x; b, Cj) =
Nb∑
l=1

blxl (6.80)

where b1, b2, . . . , bNb
are the uncertain coefficients for identification and x1, x2, . . . , xNb

are
the corresponding data, i.e., some of the following variables: 1, M − M0, (M − M0)2, r, log10 r,
GB and GC.

By solving the following simultaneous linear algebraic equations ∂Jg(b;D, Cj)/∂bl = 0,
l = 1, 2, . . . , Nb, the closed-form solution of the most probable coefficient vector b� can be
obtained:

b� = A−1

⎡
⎢⎢⎢⎢⎢⎣

1
N

∑N
n=1 x1(n) log10 PGAo(n)

1
N

∑N
n=1 x2(n) log10 PGAo(n)

...
1
N

∑N
n=1 xNb

(n) log10 PGAo(n)

⎤
⎥⎥⎥⎥⎥⎦

(6.81)

where the matrix A ∈ RNb×Nb has components A(l,l′) given by A(l,l′) = 1
N

∑N
n=1 xl(n)xl′ (n).

Similarly, the most plausible value of the predictive/fitting error variance can be found by
solving ∂p(θ|D, Cj)/∂σε = 0 and is readily obtained by:

σ2
ε

� = min
b

Jg(b;D, Cj) = Jg(b�;D, Cj) (6.82)

For large N, the posterior PDF p(θ|D, Cj) is approximately Gaussian centered at the optimal
parameter θ�. Therefore, the uncertainty of the parameter estimates can be represented by its
covariance matrix given by �θ = Hj(θ�)−1, i.e., the inverse of the Hessian matrix evaluated
at the optimal point. The diagonal elements of the covariance matrix �θ are the marginal
variances of the corresponding elements of θ and the quantification of the uncertainty of the
model parameters can be used for the uncertainty analysis of the predicted PGA.

It is attempted to use D to select the most suitable predictive model class among the afore-
mentioned model class candidates C1, C2, . . ., C32. Since probability may be interpreted as a
measure of plausibility [63], the most suitable model class is the one with the highest plausi-
bility P(Cj|D,U). The prior plausibility is taken as a uniform prior:

P(Cj|U) = 1/32, j = 1, 2, . . . , 32 (6.83)

Therefore, the plausibility of a model class is proportional to the evidence:

P(Cj|D) ∝ p(D|Cj) (6.84)

In the current situation that the goodness-of-fit function is quadratic for the uncertain parameters
(except for σ2

ε ), the conditional posterior PDF p(b|D, Cj, σ
2
ε ) is Gaussian and the posterior PDF

p(θ|D, Cj) is approximately Gaussian for large N. According to Section 6.3.1.1, the evidence
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p(D|Cj) can be approximated by:

p(D|Cj) ≈ p(θ�|Cj) exp

(
−N

2

)
π

Nj−N

2 (
√

2σ�
ε )Nj+1−N

√
NNj |A|

(6.85)

where Nj = Nb + 1 is the number of uncertain parameters in the predictive model class Cj ,
i.e., including the unknown coefficients to be determined in the predictive formula and the
unknown predictive/fitting error parameter, and θ� is the optimal parameter vector found by
maximizing the posterior PDF, which is equivalent to minimizing its negative logarithm. By
Equations (6.14) and (6.85), the Ockham factor is given by:

Oj = p(θ�|Cj)|A|− 1
2

( π

N

)Nj
2

(
√

2σ�
ε )Nj+1 (6.86)

It serves as a measure of the robustness of a model class. The model classes that depend too
sensitively on their parameters are penalized more heavily because their robustness is low
(sensitive to noise and modeling error) and over-fitting/over-parameterization may occur. In
this case, small changes of the data points may substantially affect the parameter identification
results. This is not preferable since future predictions will be sensitive to the measurement
noise and modeling error of the data.

6.5.3 Analysis with Strong Ground Motion Measurements

6.5.3.1 Description of the Database

A database of strong-motion records is obtained from the China Earthquake Data Center [50].
In this study, the horizontal components of the PGA records are considered and only the records
with M > 3.5 are utilized so M0 = 3.5 is taken in Equation (6.75). Table 6.4 summarizes the
details of the records in this database. There are 249 records, observed from 32 stations in
the Tangshan and Xinjiang regions. Figure 6.7 shows the site-to-hypocenter distances versus
the magnitudes of the earthquakes for each record in both normal and logarithm scales for r.
The symbols ‘o’ and ‘x’ denote the records in the Tangshan and Xinjiang region, respectively.
Figure 6.8 shows the measured values of log10 PGA versus M and r. On the left subplot, there
are two circles (Tangshan) around the lower right corner, implying small PGA values with
large M. This is because the two records associate with large values of r as can be seen from
the two circles near the lower right corner on the right subplot.

Table 6.4 Information of the database

Site class

Region Records Earthquakes Stations A B C

Tangshan 94 18 19 8 6 5
Xinjiang 155 125 13 4 6 3
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Figure 6.7 Distribution of M and r in the database
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The classification of the site foundation depends on its stiffness and the averaged shear
velocity over the upper 30 m is used as its measure [27]. Since only the soil/rock types are
provided by the data center, the site class is defined in a slightly different way from the
original definition by Boore et al. [27]. Specifically, granite, sandstone, bedrock, siltstone, and
conglomerate are classified as class A. Alluvium, diluvium, and weathering conglomerate are
included in class B. Soft soil, clay and subclay are classified as class C. This problem is region-
dependent because geographical and geological conditions are important factors that govern
the traveling waves from the earthquake source to the site. Therefore, independent studies of
the predictive model class selection are performed separately using the data of the Tangshan
and Xinjiang regions.

Note that the range of log10 PGA in the data set lies in the interval of [−1, 3]. The prior PDF
for b1 in Equation (6.75) is taken to be a uniform distribution in the range from −1 to 3. For
the other parameters (if they are included in a predictive model class), their prior PDFs are also
taken as uniform distribution in order to let the measurement to infer the parameter values. By
considering the previous work in Boore et al. [27–29], Brillinger and Preisler [33, 34], Joyner
and Boore [125, 126] and Melchers [175], the range of the uniform distribution is taken as
[−1, 1] for b2, b3, b5, b6 and b7. For b4, it was observed that it is much smaller from a previous
study. It is also expected to happen in this case because r is much larger than log10 r in the
range of the data (Figure 6.7). Specifically, the range for b4 is taken to be [−0.01, 0.01]. Note
that as long as the range is sufficiently large, the values of the bounds do not influence the
parametric identification results of θ�.

6.5.3.2 Tangshan Region

Tangshan city is located in the North China Plain. Table 6.5 shows the model class selection
results of the predictive formula using the horizontal records of the Tangshan region. The first
column shows the ranking of each model class. A smaller number of the ranking corresponds
to a higher plausibility of the model class. The second column shows the parameters being
included in that model class, e.g., ‘1 2 3 5’ denotes a model class with free parameters b1, b2,
b3, and b5 in Equation (6.75). The third and fourth columns show the variance of the fitting
error and the corresponding maximum log-likelihood value. The fifth column shows the value
of the log-Ockham factor ln Oj in Equation (6.16), that indicates the robustness of the model
class, and the last column shows the plausibility of each model class. The full model class with
all seven parameters has the largest maximum likelihood value. This is intuitive because the
full model class has the largest output space so it is capable to fit the data at least as well as any
other model classes with less free parameters considered in this study. However, its robustness
is not as good as the other model classes and its Ockham factor is 5.79×10−10, which is the
smallest among all the model class candidates. Table 6.6 shows the most probable coefficients
of each model class and Table 6.7 shows the posterior standard deviation calculated using the
Bayesian probabilistic approach.

From Table 6.6, it is surprising that the values of b6 are always larger than b7 but the terms
b6GB and b7GC are not included in the optimal model of C1. By observing the model classes
that include these two terms, the optimal values of these parameters are of similar order of its
posterior standard deviation. This implies that the data do not provide evidence for such terms
to be statistically significant. Furthermore, some of the values of b7 (in some of the model
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Table 6.5 Model class selection results (Tangshan)

Number Parameters σ2�
ε ln p(D|θ�, Cj) ln Oj P(Cj|D,U)

1 1 2 3 5 0.088 −19.0 −15.1 7 × 10−1

2 1 2 4 5 0.092 −21.0 −14.6 1.6 × 10−1

3 1 2 3 4 5 0.088 −19.0 −16.9 1.1 × 10−1

4 1 2 3 5 6 7 0.086 −18.3 −20.0 1.1 × 10−2

5 1 2 5 0.105 −27.4 −11.7 4.5 × 10−3

6 1 2 4 5 6 7 0.091 −20.6 −19.3 2 × 10−3

7 1 2 3 4 5 6 7 0.086 −18.3 −21.8 1.7 × 10−3

8 1 3 4 5 0.100 −25.1 −15.2 1.4 × 10−3

9 1 2 4 0.106 −27.9 −12.6 1.1 × 10−3

10 1 3 4 0.109 −29.0 −13.4 1.7 × 10−4

11 1 2 3 4 0.106 −27.9 −14.9 1.1 × 10−4

12 1 2 5 6 7 0.104 −26.9 −16.4 7.1 × 10−5

13 1 3 4 5 6 7 0.099 −24.8 −19.8 1.8 × 10−5

14 1 2 4 6 7 0.105 −27.5 −17.3 1.6 × 10−5

15 1 5 0.128 −36.7 −8.75 8.1 × 10−6

16 1 4 5 0.123 −34.9 −11.2 4.2 × 10−6

17 1 3 4 6 7 0.108 −28.7 −18.0 2.2 × 10−6

18 1 4 0.129 −37.0 −9.69 2.2 × 10−6

19 1 3 5 0.122 −34.4 −12.4 2 × 10−6

20 1 2 3 4 6 7 0.105 −27.5 −19.6 1.6 × 10−6

21 1 2 3 0.125 −35.8 −12.4 5 × 10−7

22 1 5 6 7 0.125 −35.7 −13.3 2.4 × 10−7

23 1 4 5 6 7 0.120 −33.8 −15.8 1.3 × 10−7

24 1 4 6 7 0.126 −36.0 −14.2 7 × 10−8

25 1 3 5 6 7 0.120 −33.7 −16.9 4.5 × 10−8

26 1 2 3 6 7 0.123 −34.7 −16.9 1.7 × 10−8

27 1 0.175 −51.4 −6.35 3.7 × 10−11

28 1 3 0.166 −48.9 −10.2 9.7 × 10−12

29 1 2 0.174 −51.3 −8.94 3 × 10−12

30 1 6 7 0.173 −50.8 −10.5 1.1 × 10−12

31 1 3 6 7 0.162 −47.9 −14.4 3.8 × 10−13

32 1 2 6 7 0.172 −50.6 −13.1 9.4 × 10−14

classes with low plausibility) are negative. This seems to contradict with physics at the first
glance. However, this is only due to the large posterior uncertainty of this parameter, i.e., the
data do not have much say on the value of this coefficient.

Another noteworthy point is on the model class with parameters b1 and b2 only, i.e., the
twenty eighth model class. The optimal value for b2 is negative and it seems to imply that the
larger the moment magnitude of an earthquake, the smaller the PGA. However, this is only
due to the non-uniform distribution of M and r in the data set. Specifically, the correlation
coefficient between the M and r is 0.64 in this data set. This implies that a large value of
M in a record often associates with a large value of r, that reduces the PGA. Furthermore,
the correlation coefficient between the log10 PGA and M is −0.0511 and hence the optimal
coefficient b2 is negative. Therefore, a model class with too few free parameters may cause
under-fitting to the data.
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Table 6.6 Optimal parameters of each predictive model class (Tangshan)

Number b1 b2 b3 b4 b5 b6 b7

1 1.9 0.76 −0.19 — −0.86 — —
2 1.8 0.34 — −0.0025 −0.66 — —
3 1.9 0.73 −0.17 −0.000 31 −0.83 — —
4 1.8 0.76 −0.19 — −0.85 0.081 0.0033
5 2.3 0.28 — — −1.1 — —
6 1.8 0.33 — −0.0024 −0.66 0.06 0.0082
7 1.8 0.75 −0.18 −0.000 11 −0.83 0.08 0.0031
8 1.8 — 0.12 −0.0038 −0.49 — —
9 1.1 0.27 — −0.0041 — — —
10 1.2 — 0.11 −0.0051 — — —
11 1.1 0.28 −0.005 −0.0041 — — —
12 2.3 0.27 — — −1.1 0.074 0.037
13 1.8 — 0.12 −0.0037 −0.49 0.058 0.012
14 1.1 0.27 — −0.0041 — 0.062 −0.016
15 2.0 — — — −0.68 — —
16 1.7 — — −0.0014 −0.39 — —
17 1.2 — 0.11 −0.005 — 0.056 −0.008
18 1.3 — — −0.0026 — — —
19 2.3 — 0.049 — −0.93 — —
20 1.1 0.30 −0.018 −0.0039 — 0.064 −0.017
21 0.86 0.83 −0.29 — — — —
22 2.0 — — — −0.69 0.12 0.027
23 1.7 — — −0.0014 −0.39 0.12 0.0094
24 1.2 — — −0.0027 — 0.11 −0.0064
25 2.2 — 0.046 — −0.91 0.10 0.040
26 0.84 0.83 −0.29 — — 0.11 −0.024
27 1.2 — — — — — —
28 1.2 — −0.042 — — — —
29 1.2 −0.03 — — — — —
30 1.1 — — — — 0.10 0.026
31 1.2 — −0.046 — — 0.13 0.014
32 1.2 −0.039 — — — 0.11 0.024

In order to balance the data fitting capability and robustness, a relatively simple model class
is chosen by the Bayesian model class selection approach and its optimal model is given by:

log10 PGA = 1.9 + 0.76(M − 3.5) − 0.19(M − 3.5)2 − 0.86 log10 r (6.87)

where PGA is in cm/s2. The term −0.86 log10 r indicates that the PGA decreases with an
increasing site-to-hypocenter distance. The PGA decreases by 45% (≈ (1 − 2−0.86) × 100%)
if the value of r is doubled and all the other factors remain the same. This predictive model
class has a plausibility over 0.7 by the Bayesian model selection approach. It is noted that:

∂ log10 PGA

∂M
= −0.38M + 2.09 (6.88)
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Table 6.7 Uncertainty of the parameters for each predictive model class (Tangshan)

Number b1 b2 b3 b4 b5 b6 b7

1 0.17 0.13 0.043 — 0.14 — —
2 0.19 0.06 — 0.000 66 0.17 — —
3 0.19 0.20 0.083 0.0012 0.19 — —
4 0.18 0.13 0.043 — 0.13 0.07 0.08
5 0.15 0.06 — — 0.14 — —
6 0.20 0.06 — 0.000 66 0.17 0.07 0.08
7 0.19 0.20 0.083 0.0012 0.19 0.07 0.08
8 0.20 — 0.026 0.000 84 0.17 — —
9 0.05 0.06 — 0.000 53 — — —
10 0.04 — 0.026 0.000 73 — — —
11 0.09 0.19 0.082 0.000 99 — — —
12 0.16 0.06 — — 0.14 0.08 0.09
13 0.20 — 0.026 0.000 84 0.17 0.08 0.08
14 0.06 0.06 — 0.000 53 — 0.08 0.09
15 0.15 — — — 0.12 — —
16 0.22 — — 0.000 74 0.19 — —
17 0.05 — 0.027 0.000 73 — 0.08 0.09
18 0.04 — — 0.000 45 — — —
19 0.19 — 0.022 — 0.16 — —
20 0.10 0.19 0.082 0.0010 — 0.08 0.09
21 0.08 0.15 0.048 — — — —
22 0.15 — — — 0.12 0.08 0.09
23 0.22 — — 0.000 73 0.19 0.08 0.09
24 0.06 — — 0.000 45 — 0.08 0.10
25 0.19 — 0.023 — 0.16 0.08 0.09
26 0.08 0.15 0.048 — — 0.08 0.09
27 0.04 — — — — — —
28 0.05 — 0.019 — — — —
29 0.06 0.06 — — — — —
30 0.06 — — — — 0.10 0.11
31 0.06 — 0.019 — — 0.10 0.11
32 0.08 0.06 — — — 0.10 0.11

so it becomes negative if M > 5.5. This is because there are only two data points with a
moment magnitude larger than 6.0 but the associated hypocenter-station distances are large
(Figure 6.7) so the resultant PGAs are small (Figure 6.8). Therefore, the predictive model in
Equation (6.87) is reliable only for a moment magnitude between 3.5 and 5.5. More records
with M > 5.5 are needed to expand the applicable range.

Figure 6.9 summarizes the result of Equation (6.87) for site class A. The six curves (from
top to bottom) show the log10 PGA versus the magnitude of earthquake M for six levels of
distance, namely 10, 50, 100, 250, 500 and 1000 km. This chart can be used for prediction of
peak ground acceleration in the design process. One first estimates the closest fault from the
site so the corresponding curve can be selected. This curve shows the estimated peak ground
acceleration under different levels of earthquake, which may be estimated by neural networks
[194].
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Figure 6.9 Design chart for site class A (Tangshan)

6.5.3.3 Xinjiang Region

Xinjiang is in the North West region of China. In the same fashion as in Tables 6.5 and 6.6,
Tables 6.8 and 6.9 show the predictive model class selection results and the optimal parameters
of each model class. From Table 6.9, the optimal predictive model for the PGA is given by:

log10 PGA = 1.9 + 0.22(M − 3.5) − 0.4 log10 r + 0.24GB + 0.06GC (6.89)

Note that the first four model classes possess similar plausibility, implying that the Bayesian
model selection method does not have a strong preference on the most plausible model class.
This is in contrast to the previous case in the Tangshan region, in which the plausibility of the
optimal model class is over 0.7. With the data of Xinjiang, a multi-model predictive formula
can be used as follows:

log10 PGA =
4∑

j=1

κ(log10 PGA)jP(Cj|D) (6.90)

where (log10 PGA)j is the prediction of PGA using the jth most plausible model class and κ =
1/
∑4

j=1 P(Cj|D) is a normalizing constant. In other words, the PGA is estimated using four
model classes with the weightings being the relative plausibility given the data. Specifically,
this multi-model is given by:

log10 PGA = 2.2 + 0.12(M − 3.5) + 0.033(M − 3.5)2 + 0.00071r − 0.56 log10 r

+ 0.26GB + 0.076GC

(6.91)



248 Bayesian Methods for Structural Dynamics and Civil Engineering

Table 6.8 Model class selection results (Xinjiang)

Number Parameters σ2�
ε ln p(D|θ�, Cj) ln Oj P(Cj|D,U)

1 1 2 5 6 7 0.067 −10.0 −18.6 2.3 × 10−1

2 1 2 4 5 6 7 0.064 −7.54 −21.2 2 × 10−1

3 1 3 5 6 7 0.066 −8.88 −19.8 2 × 10−1

4 1 3 4 5 6 7 0.064 −6.43 −22.4 1.7 × 10−1

5 1 2 5 0.072 −16.5 −13.6 4.9 × 10−2

6 1 3 5 0.072 −15.6 −14.8 3.5 × 10−2

7 1 2 3 5 6 7 0.066 −8.65 −21.9 3 × 10−2

8 1 2 3 4 5 6 7 0.063 −6.07 −24.6 2.9 × 10−2

9 1 2 4 5 0.071 −14.7 −16.1 2.4 × 10−2

10 1 3 4 5 0.070 −13.7 −17.4 1.8 × 10−2

11 1 2 6 7 0.072 −15.9 −16.4 5.5 × 10−3

12 1 2 3 5 0.072 −15.6 −16.9 4.4 × 10−3

13 1 3 6 7 0.071 −15.1 −17.6 3.6 × 10−3

14 1 2 3 4 5 0.070 −13.7 −19.5 2.3 × 10−3

15 1 2 0.078 −22.5 −11.5 9.9 × 10−4

16 1 2 4 6 7 0.071 −14.8 −19.4 8.3 × 10−4

17 1 3 4 6 7 0.070 −13.9 −20.7 5.7 × 10−4

18 1 2 3 6 7 0.071 −15.0 −19.7 5 × 10−4

19 1 3 0.078 −22.0 −12.7 4.8 × 10−4

20 1 2 4 0.077 −21.1 −14.5 2.1 × 10−4

21 1 3 4 0.076 −20.5 −15.7 1.1 × 10−4

22 1 2 3 4 6 7 0.070 −13.7 −22.7 8.8 × 10−5

23 1 2 3 0.078 −22.0 −14.8 6.3 × 10−5

24 1 2 3 4 0.076 −20.5 −17.7 1.5 × 10−5

25 1 0.090 −33.6 −7.85 5.8 × 10−7

26 1 5 0.090 −33.4 −9.81 1 × 10−7

27 1 4 0.090 −33.4 −10.7 4.1 × 10−8

28 1 4 5 0.090 −33.3 −12.2 1 × 10−8

29 1 6 7 0.090 −33.0 −12.6 9.4 × 10−9

30 1 5 6 7 0.089 −32.3 −14.5 2.9 × 10−9

31 1 4 6 7 0.089 −32.7 −15.4 7.4 × 10−10

32 1 4 5 6 7 0.089 −32.3 −16.8 2.8 × 10−10

and the associated uncertainty of the parameters b1, b2, . . ., b7 are 0.21, 0.02, 0.006, 0.000
47, 0.15, 0.08 and 0.097, respectively. Of course, one may consider to include five or even
more model classes in Equation (6.90) but the results will be virtually the same since the
plausibilities of the fifth or below model classes are small. One important point is that this
multi-mode predictive formula includes all seven parameters but it is not the optimal model
in the full model class (eighth model class in Table 6.9) as their parameter values are not
the same. This multi-model predictive formula (along with the posterior uncertainty of the
parameters) does not have the most powerful data fitting capability but it possesses a higher
level of robustness than the optimal model in the full model class. In the same fashion as
Figure 6.9, Figure 6.10 summarizes the result of Equation (6.91) for site class A. Again, the
six curves (from top to bottom) show the log10 PGA versus the magnitude of the earthquake
M for six levels of distance, namely 10, 50, 100, 250, 500 and 1000 km.
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Table 6.9 Optimal parameters of each predictive model class (Xinjiang)

Number b1 b2 b3 b4 b5 b6 b7

1 1.9 0.22 — — −0.40 0.24 0.060
2 2.4 0.24 — 0.0015 −0.74 0.28 0.11
3 2.1 — 0.067 — −0.40 0.24 0.043
4 2.5 — 0.073 0.0015 −0.75 0.27 0.092
5 2.2 0.17 — — −0.40 — —
6 2.3 — 0.052 — −0.41 — —
7 2.0 0.066 0.049 — −0.41 0.24 0.046
8 2.5 0.082 0.05 0.0015 −0.76 0.27 0.097
9 2.6 0.19 — 0.0013 −0.68 — —
10 2.7 — 0.057 0.0013 −0.70 — —
11 1.4 0.19 — — — 0.20 −0.030
12 2.3 0.032 0.042 — −0.41 — —
13 1.5 — 0.057 — — 0.20 −0.046
14 2.7 0.044 0.045 0.0013 −0.71 — —
15 1.6 0.12 — — — — —
16 1.4 0.19 — −0.000 62 — 0.20 −0.018
17 1.6 — 0.059 −0.000 65 — 0.20 −0.035
18 1.5 0.053 0.042 — — 0.20 −0.045
19 1.7 — 0.038 — — — —
20 1.7 0.13 — −0.000 71 — — —
21 1.7 — 0.04 −0.000 73 — — —
22 1.5 0.051 0.044 −0.000 65 — 0.20 −0.033
23 1.7 0.02 0.032 — — — —
24 1.7 0.018 0.035 −0.000 73 — — —
25 1.8 — — — — — —
26 1.9 — — — −0.083 — —
27 1.8 — — −0.000 32 — — —
28 1.9 — — −0.000 16 −0.053 — —
29 1.7 — — — — 0.093 0.12
30 1.9 — — — −0.14 0.10 0.16
31 1.7 — — −0.000 38 — 0.093 0.13
32 2.0 — — 0.000 13 −0.17 0.10 0.16

6.5.4 Concluding Remarks

The Bayesian model class selection approach was applied for selection of the seismic attenua-
tion model. In order to balance between the capability of data fitting and the robustness to noise
and modeling error, the predictive model class is selected by maximizing the plausibility of
the model class given the strong-motion records. A database of 249 strong-motion records in
the Tangshan and Xinjiang regions of China was utilized for the analysis. It turned out that the
most plausible model class is not the full model class even though the latter gives the smallest
fitting error. The most plausible model class is less prone to noise so a more reliable future
prediction can be anticipated. If several predictive model classes possess similar plausibili-
ties given the measurements, the multi-model predictive formula can be considered as in the
case of the Xinjiang region. The Bayesian approach allows us to obtain not only the optimal
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Table 6.10 Uncertainty of the parameters for each predictive model class (Xinjiang)

Number b1 b2 b3 b4 b5 b6 b7

1 0.17 0.03 — — 0.11 0.08 0.10
2 0.25 0.24 — 0.000 68 0.19 0.08 0.10
3 0.17 — 0.009 — 0.11 0.08 0.10
4 0.25 — 0.009 0.000 67 0.19 0.08 0.10
5 0.16 0.03 — — 0.11 — —
6 0.17 — 0.008 — 0.11 — —
7 0.18 0.10 0.029 — 0.11 0.08 0.10
8 0.25 0.10 0.029 0.000 67 0.19 0.08 0.10
9 0.25 0.03 — 0.000 69 0.19 — —
10 0.25 — 0.0085 0.000 68 0.19 — —
11 0.09 0.03 — — — 0.08 0.10
12 0.17 0.10 0.03 — 0.11 — —
13 0.08 — 0.009 — — 0.08 0.10
14 0.26 0.10 0.03 0.000 68 0.19 — —
15 0.04 0.03 — — — — —
16 0.09 0.03 — 0.000 41 — 0.08 0.10
17 0.08 — 0.009 0.000 41 — 0.08 0.10
18 0.10 0.10 0.03 — — 0.08 0.10
19 0.03 — 0.008 — — — —
20 0.04 0.03 — 0.000 43 — — —
21 0.03 — 0.008 0.000 43 — — —
22 0.10 0.10 0.03 0.000 41 — 0.08 0.10
23 0.07 0.11 0.032 — — — —
24 0.07 0.10 0.031 0.000 43 — — —
25 0.02 — — — — — —
26 0.17 — — — 0.11 — —
27 0.03 — — 0.000 46 — — —
28 0.25 — — 0.000 73 0.18 — —
29 0.09 — — — — 0.09 0.10
30 0.20 — — — 0.12 0.09 0.11
31 0.09 — — 0.000 46 — 0.09 0.10
32 0.29 — — 0.000 76 0.21 0.09 0.11

parameters within a model class but also the associated uncertainties of the parameter values.
The quantified uncertainty can be further used for uncertainty analysis of the prediction.

6.6 Prior Distributions – Revisited

Prior distribution does not significantly affect the parametric identification (both identified
values and associated uncertainty) results if it is sufficiently flat in the range with significant
likelihood values. Therefore, it is common to absorb the prior distribution into the normalizing
constant and the results are equivalent to the maximum likelihood solution. However, it is
not appropriate to absorb the prior distribution into the normalizing constant for model class
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Figure 6.10 Design chart for site class A (Xinjiang)

selection. The evidence integral is the inner product of the prior PDF and the likelihood function:

p(D|Cj) =
∫

�

p(D|θ, Cj)p(θ|Cj)dθ (6.92)

It is clear that the prior distribution affects the modal class selection results. Therefore, the
choice of prior distribution is important for model class selection because it offers a reference
for comparison in quantifying the information gained from the data. The prior distribution
expresses how much previous experience or information a user has about a model class. A
more informative prior distribution is used if the user has more experience of the model class.
The evidence of such a model class is surplus due to the lifting of the prior PDF. However,
inappropriate previous information on the parameters will be penalized by the small value of
the inner product of the prior distribution and the likelihood function. In general, it is more
difficult to give the prior distribution for empirical models since the physical meaning of the
parameters are not as obvious as physical models. More investigations are needed to explore
further in this direction.

For a given likelihood function, the bounds are given by:

inf
θ

p(D|θ, Cj) ≤ p(D|Cj) ≤ sup
θ

p(D|θ, Cj) (6.93)

Note that inf
θ

p(D|θ, Cj) = 0 if the range of any of the parameters is infinite. Equalities hold

if the prior distribution is a multi-dimensional Dirac delta function centered at the parameter
vector where the likelihood function is maximized or minimized. However, it is unusual to
achieve the bounds since the prior distribution is too informative.
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In general the Bayesian model selection approach favors model classes with physical mean-
ing because the prior distributions of the physical parameters can be obtained with smaller
uncertainties. As a result, the ratio between the posterior and prior uncertainties will be rel-
atively larger so the penalty by the Ockham factor will be smaller. For example, consider a
finite-element model for a building and its uncertain stiffness parameters. Before the data are
obtained, it is possible to estimate these parameters from the structural drawings and the prop-
erties of the materials. Although there is an uncertainty due to the discrepancy of the materials
properties, modeling error and possible damages, the prior uncertainties of these parameters
can be kept at a reasonably small level. On the other hand, it is difficult to estimate, prior to
the data, the uncertain parameters of an empirical model so the prior distribution has to cover
a relatively large range. Therefore, the penalty by the Ockham factor will be heavier since the
ratio between the posterior and prior uncertainty will be smaller.

There is no direct relationship between the penalty by the Ockham factor and the number
of degrees of freedom of a model. For a model with a large number of degrees of freedom, a
large number of uncertain parameters normally come along and this will indirectly increase
the penalty. However, it is also possible to impose extra mathematical constraints to reduce
the number of uncertain parameters. For example, consider a structural truss model with 5000
members. The number of uncertain parameters can be reduced by grouping the members into
several categories only and use one uncertain stiffness parameter for each of them. However,
if the extra constraints by equating some of the uncertain parameters are inaccurate, the model
class will be penalized by the likelihood function, but not the Ockham factor.

Note that it is appropriate to select the prior distribution and its boundaries by previous
experience or physical laws but not by observing the measurements. In other words, it is
inappropriate to select the prior distribution by observing the bounds of the measurements.

6.7 Final Remarks

The book ‘The Black Swan: The Impact of the Highly Improbable’ [257] received great
attention due to the global financial crisis in the Fall of 2008. There is an example about a
turkey with its 1001 days. Here, this example is slightly modified for discussion in the Bayesian
point of view. A mathematically gifted goose, called Goody, was raised by a farmer. Goody
observed that there were 1.0% of the geese being killed in the farm every day and he started
to estimate the probability of survival for the next day. The initial probability was 0.99 due to
his observation and this was his prior information for estimating the death rate in the Poisson
model used in Chapter 2. Goody decided to use the conjugate prior distribution, i.e., the Gamma
distribution in this case, with a shape parameter equal to 2 and a scale parameter equal to 0.005:

p(λ|C) = 2002λe−200λ (6.94)

This distribution has the most probable value (mode) 0.005, mean 0.01 and standard deviation√
2 × 0.005. After N days of survival, the likelihood function was given by:

p(D|λ, C) = Ne−Nλ (6.95)

as shown in Chapter 2. Then, Goody updated the rate of death by the Bayes’ theorem:

p(λ|D, C) = κ0p(λ|C)p(D|λ, C) = 2002Nκ0λe−(N+200)λ (6.96)
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Figure 6.11 Prior and posterior PDFs of the death rates after 10, 50 and 100 days

The posterior PDFs were Gamma distributed and they are shown in Figure 6.11 for N = 10, 50,
and 100. The prior PDF is also shown with a dashed line for reference. The most probable
value of the distribution in Equation (6.96) is given by:

λ� = 1

N + 200
(6.97)

The mean value is 2/(N + 200) and the standard deviation is
√

2/(N + 200). Therefore, the
coefficient of variation was always 1/

√
2. As time went by, the updated death rate kept on

decreasing with a decreasing standard deviation of the estimation.
Meanwhile, the farmer also estimated the day for killing Goody. At the beginning, his prior

information was also based on the data obtained from his experience in the farm. Since Goody
was raised for selling to the market, the farmer would kill it if its weight reached a prescribed
level w′. Also, he monitored the weight of Goody everyday, denoted by w0, w1, . . . , wN , so
the growth on the nth day was defined as:

�wn = wn − wn−1, n = 1, 2, 3, . . . (6.98)

The increment of weight was a discrete stochastic process and it was modeled as a uniformly
distributed i.i.d. with range [0, U], where the upper bound U is uncertain. The farmer updated
the posterior PDF on the nth day as follows. First, the likelihood function is given by:

p(�w1, �w2, . . . , �wn|U, C) =
{

U−n, if �wk ≤ U, ∀k = 1, 2, . . . , n

0, otherwise
(6.99)
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To simplify the problem, a non-informative prior distribution for U was used so the updated
PDF for U was:

p(U|�w1, �w2, . . . , �wn, C) =
{

κ1U
−n, if U ≥ δn

0, otherwise
(6.100)

where δn was the maximum daily growth up to the nth day:

δn ≡ max
k=1,2,...,n

�wk (6.101)

The normalizing constant is:

κ1 = (n − 1)δn−1
n , n = 2, 3, 4, . . . (6.102)

and so the mean is equal to:

E(U|�w1, �w2, . . . , �wn, C) = n − 1

n − 2
δn (6.103)

For a given value of U, the PDF of Goody’s weight on any future day could be readily obtained.
By integrating from w′ to infinity, the probability of killing Goody on or before that day could
be obtained. Then, by using the updated PDF of U in Equation (6.100) and the law of total
probability, the updated cumulative distribution of killing Goody on or before a particular day
could be computed and the most probable killing day and the confidence interval were readily
obtained. This procedure could be proceeded daily to update the results.
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Figure 6.12 Weight of Goody and daily growth
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Figure 6.13 Prediction by the farmer

Here, the problem is simplified for demonstration. Assume that the farmer simply updated
daily the upper bound of the uniform distribution U but treated it as a fixed value instead of a
random variable. In other words, the updated value of U on the nth day was obtained:

Un = n − 1

n − 2
δn (6.104)

Now, the weight of Goody on a future day n′ > n could be estimated with mean:

E(wn′ |�w1, �w2, . . . , �wn, C) = wn + n − 1

2(n − 2)
(n′ − n)δn (6.105)

and standard deviation:

σwn = n − 1

n − 2

√
n′ − n

12
δn (6.106)

The expected day for killing Goody was obtained by solving the following equation:

wn + n − 1

2(n − 2)
(n′ − n)δn = w′ (6.107)

and is given by:

n′� = n + 2(n − 2)(w′ − wn)

(n − 1)δn

(6.108)
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A typical simulated time history of Goody’s weight is shown in Figure 6.12. The upper subplot
shows the weight of Goody versus the number of days and the lower subplot shows the growth
of each day. The corresponding estimation by the farmer can be found in Figure 6.13. The
upper and lower bounds of the confidence interval represent the days with probabilities 75%
and 25%, respectively, that Goody achieves the target weight on or before. Therefore, the
confidence interval covers a range with 50% probability. In this example, Goody was killed on
the 107th day when it obtained the lowest ever probability of being killed. On the other hand,
on the 106th day, the farmer was almost sure to kill Goody on the next day.

Did Goody make any wrong calculation? Why was Goody killed when it obtained the lowest
ever probability of being killed? Is our logic the same as Goody in our matters? Why do more
people consider insurance policies after major earthquakes?



Appendix A
Relationship between the Hessian
and Covariance Matrix for
Gaussian Random Variables

Consider a Gaussian random vector θ with mean θ� and covariance matrix �θ so its joint
probability density function (PDF) is given by:

p(θ) = (2π)−
Nθ
2 |�θ|−

1
2 exp

[
−1

2
(θ − θ�)T �−1

θ (θ − θ�)

]
(A.1)

The objective function can be defined as its negative logarithm:

J(θ) ≡ − ln p(θ) = Nθ

2
ln 2π + 1

2
ln |�θ| + 1

2
(θ − θ�)T �−1

θ (θ − θ�) (A.2)

which is a quadratic function of the components in θ. By taking partial differentiations with
respect to θl and θl′ , the (l, l′) component of the Hessian matrix can be obtained:

H(l,l′)(θ�) = ∂2J(θ)

∂θl∂θl′

∣∣∣∣
θ=θ�

= (�−1
θ )(l,l′) (A.3)

so the Hessian matrix is equal to the inverse of the covariance matrix:

H(θ�) = �−1
θ (A.4)

For Gaussian random variables, the second derivatives of the objective function are constant
for all θ because the objective function is a quadratic function of θ. Therefore, the Hessian
matrix can be computed without obtaining the mean vector θ�.

The elements in the Hessian matrix carry the conditional information of the random vector
because they are obtained by fixing all other parameters. The diagonal elements are the curva-
ture of the objective function in the corresponding direction. The reciprocals of these diagonal
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elements are the conditional variances of the uncertain parameters in θ. However, the diagonal
elements in the covariance matrix �θ are the marginal variances of the parameters.

In many applications, the objective function is known only implicitly so the components of
the Hessian matrix has to be computed numerically, e.g., by the finite difference method, and
the diagonal elements are given by:

H(l,l)(θ�) =
[

∂

∂θl

(
∂J(θ)

∂θl

)]

θ=θ�

≈ 1

�θl

[
∂J(θ)

∂θl

∣∣∣∣
θ=θ�+�θl/2

− ∂J(θ)

∂θl

∣∣∣∣
θ=θ�−�θl/2

]

≈ 1

�θl

[
J(θ� + �θl) − J(θ�)

�θl

− J(θ�) − J(θ� − �θl)

�θl

]

= J(θ� + �θl) − 2J(θ�) + J(θ� − �θl)

(�θl)2

(A.5)

where �θl is a vector with all elements being zero except the lth element equal to a properly
selected step �θl (> 0):

�θl = [0, . . . , 0, �θl, 0, . . . , 0]T (A.6)

Furthermore, the off-diagonal elements can be computed as follows:

H(l,l′)(θ�) =
[

∂

∂θl′

(
∂J(θ)

∂θl

)]

θ=θ�

≈ 1

2�θl′

[
∂J(θ)

∂θl

∣∣∣∣
θ=θ�+�θl′

− ∂J(θ)

∂θl

∣∣∣∣
θ=θ�−�θl′

]

≈ 1

2�θl′

[
J(θ� + �θl + �θl′ ) − J(θ� − �θl + �θl′ )

2�θl

− J(θ� + �θl − �θl′ ) − J(θ� − �θl − �θl′ )

2�θl

]

= 1

4�θl�θl′
[J(θ� + �θl + �θl′ ) − J(θ� + �θl − �θl′ )

− J(θ� − �θl + �θl′ ) + J(θ� − �θl − �θl′ )]

(A.7)

where �θl and �θl′ are vectors with zero elements except the lth and l′th elements equal to
�θl and �θl′ , respectively.

Example. Gaussian Random Variable
Assume that θ is a Gaussian random variable with mean μ and variance σ2 so its PDF is:

p(θ) = 1√
2πσ

exp

[
− (θ − μ)2

2σ2

]
(A.8)
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Then, the objective function is given by:

J(θ) ≡ − ln p(θ) = 1

2
ln (2π) + ln σ + (θ − μ)2

2σ2 (A.9)

which is a quadratic function of θ.
It is assumed that the objective function is known only implicitly so the finite difference

method is used to estimate the Hessian and, hence, the variance of this random variable. By
Equation (A.5), the Hessian can be evaluated at an arbitrary point θ′:

H(θ′) = J(θ′+�θ)−2J(θ′)+J(θ′−�θ)
(�θ)2

= 1
(�θ)2

{[
1
2 ln (2π) + ln σ + (θ′+�θ−μ)2

2σ2

]
− 2

[
1
2 ln (2π) + ln σ + (θ′−μ)2

2σ2

]

+
[

1
2 ln (2π) + ln σ + (θ′−�θ−μ)2

2σ2

]}

= 1
(�θ)2

[
(�θ)2

σ2

]

= σ−2

(A.10)

It does not depend on the point θ′ and the step size �θ and this solution is exact. However,
for other distributions, Equation (A.4) is not correct but it provides a good approximation if
the uncertainty is small. Nevertheless, the Hessian calculated by the finite difference method
depends on the point of evaluation and the step size. The point of evaluation can be fixed at
the most probable value of the distribution and selection of the step size has to be carefully
handled. This will be discussed in the next example.

Example. Gamma Random Variable
Assume that the positive-valued random variable θ is Gamma distributed with shape parameter
α > 0 and scale parameter β > 0. The PDF of θ is given by:

p(θ) = θα−1 exp (−θ/β)

βα
(α)
, θ > 0 (A.11)

where 
 is the Gamma function. The mean and variance of this distribution are given by αβ

and αβ2, respectively. If α = 1, this distribution is deduced to the exponential distribution and
the most probable value is θ� = 0. If α > 1, the most probable parameter is given by:

θ� = (α − 1)β (A.12)

Furthermore, the objective function can be defined as the negative logarithm of the PDF:

J(θ) ≡ − ln p(θ) = −(α − 1) ln θ + θ

β
+ α ln β + ln 
(α), θ > 0 (A.13)
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Again, it is assumed that the objective function is known only implicitly. By Equation (A.5),
the Hessian can be computed:

H(θ�) = 1

(�θ)2

{[
−(α − 1) ln (θ� + �θ) + θ� + �θ

β

]
− 2

[
−(α − 1) ln θ� + θ�

β

]

+
[
−(α − 1) ln (θ� − �θ) + θ� − �θ

β

]}

= (α − 1)

(�θ)2

[
− ln (θ� + �θ) + 2 ln θ� − ln (θ� − �θ)

]

= − (α − 1)

(�θ)2

[
ln

(
1 + �θ

θ�

)
+ ln

(
1 − �θ

θ�

)]

(A.14)

In contrast to the Gaussian random variable, this solution depends on the point for evaluation
and also the finite-difference step size.

For a random variable with a small uncertainty, the variance can be approximated by
H(θ�)−1. To demonstrate this, let α = μ/β for Equation (A.11) so the mean is μ and the
variance is μβ. For small β, the Hessian estimated by finite difference method can be approx-
imated by:

H(θ�) = − (α − 1)

(�θ)2

[
ln

(
1 + �θ

θ�

)
+ ln

(
1 − �θ

θ�

)]

≈ − (α − 1)

(�θ)2

[
�θ

θ�
− 1

2

(
�θ

θ�

)2

+ · · · − �θ

θ�
− 1

2

(
�θ

θ�

)2

+ · · ·
]

≈ (α − 1)

(�θ)2

(
�θ

θ�

)2

= 1

(μ − β)β

≈ 1

μβ

(A.15)

Therefore, the Hessian estimated variance provides a good approximation: H(θ�)−1 ≈ μβ. In
the following, two cases are demonstrated and they correspond to a large variance and a small
variance.

Case 1: α = 10 and β = 0.1
This distribution corresponds to the more spread PDF in Figure A.1. In this case, the mean
and variance are αβ = 1 and αβ2 = 0.1, respectively. Therefore, the coefficient of variation
is 1/

√
10 ≈ 32% and it represents a case of large uncertainty. By using Equation (A.14), the

Hessian and the estimated variance are shown in Figure A.2 for different finite-difference step
sizes up to 0.5. It is clearly seen that the estimation depends on the step size. The correct
value of the variance is 0.1 but the estimation is 10% off for this random variable with a large
coefficient of variation.
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Figure A.3 Finite-difference estimated Hessian and variance (α = 100, β = 0.01)

Case 2: α = 100 and β = 0.01
This distribution corresponds to the more concentrated PDF in Figure A.1. In this case, the
mean and variance are αβ = 1 and αβ2 = 0.01, respectively, so the coefficient of variation is
10%. This random variable has the same mean as Case 1 but a smaller variance. Figure A.3
shows the Hessian and the estimated variance using different finite-difference step sizes. Again,
the estimation depends on the step size. The correct value of the variance is 0.01 and the error
of the estimation is about 1% when the step size is small. In general, the finite-difference
estimated variance is more accurate for a smaller coefficient of variation of the distribution
because the local topology of the PDF is more representative for the global distribution in this
case. This example shows that this approximation is acceptable up to 10% COV.



Appendix B
Contours of Marginal PDFs
for Gaussian Random Variables

Two methods are introduced in this appendix for drawing the contours of marginal PDFs.

Method 1. Eigenvalue Problem Method

Consider a vector of two Gaussian random variables θ = [θ1, θ2]T with mean θ� = [θ�
1, θ�

2]T

and covariance matrix �θ . The goal here is to obtain the parametric form of the joint PDF
contour that covers an area with a prescribed probability. First, define a vector of two new
random variables y = [y1, y2]T by the following transformation:

y = P(θ − θ�) (B.1)

where P ∈ R2×2 is a fixed invertible matrix. Therefore, y is also Gaussian with zero mean:

E[y] = E[P(θ − θ�)] = P(E[θ] − θ�) = 0 (B.2)

and covariance matrix:

�y ≡ E[yyT ] = E[P(θ − θ�)(θ − θ�)T PT ] = P�θPT (B.3)

If the matrix P�θPT is diagonal, say D, the Gaussian random variables y1 and y2 are uncor-
related and, hence, statistically independent. Then, it is an easy task to draw the PDF contours
in the y1 − θ� − y2 coordinate system. In order to obtain a solution for the matrix P to fulfill
this goal, consider the eigenvalue problem of the covariance matrix �θ:

�θV = VD (B.4)

Since the covariance matrix �θ is symmetric, the eigenvector matrix V can be normalized such
that V−1 = VT . In particular, this matrix takes the following form:

V =
[

cos α − sin α

sin α cos α

]
, α ∈ R (B.5)

Bayesian Methods for Structural Dynamics and Civil Engineering Ka-Veng Yuen
© 2010 John Wiley & Sons (Asia) Pte Ltd



264 Bayesian Methods for Structural Dynamics and Civil Engineering

which represents rigid body rotation. Therefore, Equation (B.4) can be rewritten as follows:

VT �θV = D (B.6)

By letting P = VT , the covariance matrix of y in Equation (B.3) is diagonal: �y = D. In
other words, the random variables y1 and y2 in the vector y are independent. Furthermore, the
diagonal elements, D1 and D2, of the matrix D are their variances. Therefore, the joint PDF
of y1 and y2 is:

p(y1, y2) = 1

2π
√

D1D2
exp

(
− y2

1

2D1
− y2

2

2D2

)
(B.7)

The column vectors in the matrix V indicates the principal axes in the (θ1, θ2) plane, i.e., the
direction of the axes of the rotated coordinate system.

In order to draw the contours of the joint PDF in the (θ1, θ2) plane, the rotated coordinate
system is utilized. By Equation (B.7), the α-contour has the following parametric form:

y1 = αcos β

y2 = αsin β, β ∈ [0, 2π)
(B.8)

where α is a distance parameter that controls the size and probability of the area enclosed by
the contour. By Equation (B.1) with P = VT , the coordinates in the original coordinate system
can be obtained:

[
θ1

θ2

]
= θ� + V

[
y1

√
D1

y2
√

D2

]
(B.9)

The probability of the area enclosed by this ellipticalα-contour can be obtained by integrating
the joint PDF in Equation (B.7) over this area:

P(α) = 1 − exp (−α2/2) (B.10)

On the other hand, a contour enclosing an area of probability P has the corresponding distance
parameter α:

α =
√

−2 ln (1 − P) (B.11)

Therefore, the area of the ellipse is proportional to − ln (1 − P). In particular, if one wants to
draw the contour that encloses the area of 50% probability, the value of α should be taken as
α = √

2 ln 2 = 1.1774. For P = 0.9, α = √
2 ln 10 = 2.1460. For P = 0.99, α = 2

√
ln 10 =

3.0349. Table B.1 summarizes the relationship between P and α.

Table B.1 Relationship between P and α

P 0.1 0.2 0.3 0.4 0.5 0.6 0.7
α 0.4590 0.6680 0.8446 1.0108 1.1774 1.3537 1.5518

P 0.8 0.85 0.9 0.95 0.99 0.999 0.9999
α 1.7941 1.9479 2.1460 2.4477 3.0349 3.7169 4.2919
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Example. Consider two Gaussian random variables θ1 and θ2 with mean θ�
1 = 3 and θ�

2 = 2
and covariance matrix:

�θ =
[

4 1.5

1.5 1

]

The eigenvalues can be obtained by solving the characteristic equation:
∣∣∣∣�θ − DlI2

∣∣∣∣ = 0, l = 1, 2 (B.12)

In this case, this equation becomes:
∣∣∣∣∣
4 − Dl 1.5

1.5 1 − Dl

∣∣∣∣∣ = 0

The eigenvalues are given by D1 = 4.6213 and D2 = 0.3787 and the corresponding eigenvec-
tor matrix is:

V =
[

0.9239 −0.3827

0.3827 0.9239

]

so cos α = 0.9239 and α = 0.3926 rad ≈ 22.5◦.
Figure B.1 shows the three contours that cover areas with 50%, 90% and 99% of probabilities.

The random variables y1 = 0.9239(θ1 − 3) + 0.3827(θ2 − 2) and y2 = −0.3827(θ1 − 3) +
0.9239(θ2 − 2) are independent Gaussians with variances 4.6213 and 0.3787, respectively.

−4 −2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

9

θ
1

θ 2

 

 

y
1

y
2

Mean
50%
90%
99%

Figure B.1 Contours of the joint PDF



266 Bayesian Methods for Structural Dynamics and Civil Engineering

Method 2. Cholesky Decomposition Method

First, the covariance can be factorized by the Cholesky Decomposition since it is symmetric
[189]:

�θ = LLT

where L is a lower triangular matrix. In general, the matrix L can be computed by the function
‘chol’ in MATLAB® [171]. However, in this case with a 2 × 2 covariance matrix, the matrix
L can be easily obtained:

L =

⎡
⎢⎢⎢⎢⎢⎣

√
�

(1,1)
θ 0

�
(2,1)
θ√
�

(1,1)
θ

√√√√√�
(2,2)
θ −

(
�

(2,1)
θ

)2

�
(1,1)
θ

⎤
⎥⎥⎥⎥⎥⎦

If y1 and y2 are independent standard Gaussian random variables, then the random variables
θ1 and θ2 have means θ�

1 and θ�
2 and a covariance matrix �θ if they are defined as follows:

[
θ1

θ2

]
=

[
θ�

1

θ�
2

]
+ L

[
y1

y2

]
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In a similar fashion as in the eigenvalue problem method, the α-contour can be found by
taking y1 and y2 as:

y1 = αcos β

y2 = αsin β, β ∈ [0, 2π)
(B.13)

Then, Equation (B.13) will give the coordinates of the α-contour. Again, the probability–α

relationship is the same as in Table B.1.
The example in the previous section is repeated using the Cholesky Decomposition Method

and the matrix L is given by:

L = 1

4

[
8 0

3
√

7

]

Three contours are shown in Figure B.2 and they are identical to the corresponding ones in
Figure B.1. However, the transformations in these two methods are not the same. For example,
the point y1 = 0, y2 = α will be transformed to the major/minor axis in Method 1 but this
point will remain on the θ2 axis in the second method.





Appendix C
Conditional PDF for Prediction

C.1 Two Random Variables

Consider two Gaussian random variables x1 and x2 with mean μ1 and μ2, respectively. Also,
use σ2

1 and σ2
2 to denote their variances. The correlation coefficient is denoted by ρ, with

|ρ| ≤ 1.
If |ρ| /= 1, the joint PDF of x1 and x2 can be written as:

p(x1, x2) = 1

2πσ1σ2

√
1 − ρ2

× exp

{
− 1

2(1 − ρ2)

[
(x1 − μ1)2

σ2
1

− 2ρ(x1 − μ1)(x2 − μ2)

σ1σ2
+ (x2 − μ2)2

σ2
2

]}

(C.1)

Now, the problem of predicting x1 with the measurement of x2 is considered. First, by
Equation (C.1), the conditional PDF p(x1|x2) can be obtained by normalizing p(x1, x2) with
x2 fixed at its given value:

p(x1|x2) = κ0 exp

{
− 1

2(1 − ρ2)

[
(x1 − μ1)2

σ2
1

− 2ρx1(x2 − μ2)

σ1σ2

]}

= κ′
0 exp

{
− 1

2(1 − ρ2)

[
x2

1

σ2
1

−
(

2μ1

σ2
1

+ 2ρ(x2 − μ2)

σ1σ2

)
x1

]} (C.2)

where κ0 and κ′
0 are normalizing constants so that

∫ ∞
−∞ p(x1|x2)dx1 = 1. By Equation (C.2),

the conditional PDF is also Gaussian for x1 since ln p(x1|x2) is a quadratic function of x1. On
the other hand, the PDF for a Gaussian random variable can be written as:

p(X) = 1√
2πσX

exp

[
− (X − μX)2

2σ2
X

]

= κ1 exp

(
−X2 − 2μXX

2σ2
X

) (C.3)
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where κ1 = 1/(
√

2πσX) exp
(−μ2

X/2σ2
X

)
. By comparing the coefficients in the exponents of

Equations (C.2) and (C.3), the following equations are obtained:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2σ2
x1|x2

= 1

2(1 − ρ2)σ2
1

μx1|x2

σ2
x1|x2

= μ1

(1 − ρ2)σ2
1

+ ρ(x2 − μ2)

(1 − ρ2)σ1σ2

(C.4)

where μx1|x2 ≡ E[x1|x2] and σ2
x1|x2

≡ E
[
(x1 − μx1|x2 )2|x2

]
are the conditional mean and

variance, respectively. By solving these equations, the conditional variance σ2
x1|x2

is
given by:

σ2
x1|x2

= (1 − ρ2)σ2
1 (C.5)

and the conditional mean μx1|x2 is given by:

μx1|x2 = μ1 + ρσ1

σ2
(x2 − μ2) (C.6)

It is not surprising that a high absolute value of ρ facilitates the prediction in giving a small
conditional variance.

Example. Consider two Gaussian random variables x1 and x2 with mean μ1 = 3 and μ2 = 5.
The covariance matrix is taken as:

�x =
[

4 3

3 9

]

Therefore, σ1 = 2, σ2 = 3, and ρ = 1/2. By Equation (C.6), the conditional mean E[x1|x2] is
given by:

E[x1|x2] = 3 + 1/2 × 2

3
(x2 − 5) = x2 + 4

3

This can be used to predict x1 if the measurement of x2 is available. For example, if x2 is
measured to be 7, then E[x1|x2 = 7] = 11/3. Figure C.1 shows the joint PDF of x1 and x2.
The plane x2 = 7 is also shown in the figure. By Equation (C.5), the conditional variance can
also be estimated:

σ2
x1|x2

=
[
1 − (1/2)2

]
22 = 3

which does not depend on the value of x2.
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Figure C.2 shows the PDF p(x1, x2 = 7) on the line x2 = 7 and the peak occurs at x1 = 11/3,
which is the same as the conditional mean. Figure C.3 shows the contours of the joint PDF
p(x1, x2). The two solid lines show the major and minor axes of the elliptical contours. The ‘–.’
curves show the contours enclosing the area with 50% and 90% probabilities. The horizontal
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Figure C.3 Contours of the joint PDF

dashed line is x2 = 7 and the solid ellipse is the contour that is tangential to x2 = 7. It can
be seen that the tangent point is at x1 = 11/3, which is again the same as the conditional
mean.

If |ρ| = 1, the covariance matrix �x ≡ E[(x − μ)(x − μ)T ] ∈ R2×2 is singular, i.e., |�x| =
0, where x = [x1, x2]T and μ = [μ1, μ2]T . In this case, there exists a non-null vector φ =
[φ1, φ2]T such that:

�xφ = 0 (C.7)

Then, a new random variable ξ is introduced:

ξ = φT (x − μ) = φ1(x1 − μ1) + φ2(x2 − μ2) (C.8)

It has zero mean E[ξ] = 0 and zero variance:

E[ξ2] = E[φT (x − μ)(x − μ)T φ] = φT �xφ = 0 (C.9)

In other words, ξ = 0 almost everywhere (a.e.) so:

φ1(x1 − μ1) + φ2(x2 − μ2) = 0 (C.10)
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except for a set of measure zero. Then, x1 can be predicted with zero variance:

E[x1|x2] = μ1 − φ2

φ1
(x2 − μ2) (C.11)

Example. Consider two Gaussian random variables x1 and x2 with mean μ1 = 3 and μ2 = 5.
The covariance matrix is taken as

�x =
[

4 6

6 9

]

Therefore, σ1 = 2, σ2 = 3, and ρ = 1. One can easily find that:
[

4 6

6 9

] [
−3

2

]
=

[
0

0

]

so φ1 = −3 and φ2 = 2. This solution is non-unique and any vector parallel to it is also a
solution. If x2 is measured to be 7, then:

E[x1|x2] = 3 − 2

(−3)
(7 − 5) = 13/3

and the prediction has zero variance.

C.2 General Cases

Consider a Gaussian random vector x ∈ RNX with mean μ and covariance matrix �x ∈
R

NX×NX . If �x is non-singular, the joint PDF is given by:

p(x) = (2π)−
NX

2 |�x|− 1
2 exp

[
−1

2
(x − μ)T �−1

x (x − μ)

]
(C.12)

Then, the random vector x is partitioned as follows:

x = [xT
1 , xT

2 ]T (C.13)

and prediction of x1 ∈ RN1 given the measurement of x2 ∈ RN2 is concerned. In the similar
fashion as Equation (C.13), the covariance matrix is partitioned as:

�x =
[
�11 �12

�T
12 �22

]
(C.14)

where �11 ∈ RN1×N1 , �12 ∈ RN1×N2 and �22 ∈ RN2×N2 . In the same way, the inverse of the
covariance matrix, i.e., the Hessian matrix, is partitioned:

�−1
x = H =

[
H11 H12

HT
12 H22

]
(C.15)
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where H11 ∈ RN1×N1 , H12 ∈ RN1×N2 and H22 ∈ RN2×N2 . Then, the joint PDF of x in
Equation (C.12) can be expanded:

p(x) = (2π)−
NX

2 |H| 1
2 exp

[
−1

2
(x1 − μ1)TH11(x1 − μ1) − 1

2
(x1 − μ1)TH12(x2 − μ2)

− 1

2
(x2 − μ2)THT

12(x1 − μ1) − 1

2
(x2 − μ2)TH22(x2 − μ2)

]

(C.16)

It is immediately followed that the conditional PDF p(x1|x2) is given by:

p(x1|x2) = κ0 exp

[
−1

2
(x1 − μ1)TH11(x1 − μ1) − xT

1 H12(x2 − μ2)

]

= κ′
0 exp

{
−1

2
xT

1 H11x1 + xT
1

[
H11μ1 − H12(x2 − μ2)

]} (C.17)

where κ0 and κ′
0 are normalizing constants such that

∫
p(x1|x2)dx1 = 1.

Use μx1|x1
and �x1|x1 to denote the conditional mean and conditional covariance matrix for

x1 given x2. Then, a Gaussian conditional PDF can be written as:

p(x1|x2) = κ1 exp

[
−1

2
(x1 − μx1|x2

)T �−1
x1|x2

(x1 − μx1|x2
)

]

= κ′
1 exp

(
−1

2
xT

1 �−1
x1|x2

x1 + xT
1 �−1

x1|x2
μx1|x2

) (C.18)

By comparing the exponents of Equations (C.17) and (C.18), the following equations are
obtained:

{
�−1

x1|x2
= H11

�−1
x1|x2

μx1|x2
= H11μ1 − H12(x2 − μ2)

(C.19)

It can be easily shown that:

[
�11 �12

�T
12 �22

]−1

=
[

(�11 − �12�
−1
22 �T

12)−1 −(�11 − �12�
−1
22 �T

12)−1�12�
−1
22

−�−1
22 �T

12(�11 − �12�
−1
22 �T

12)−1 (�22 − �T
12�

−1
11 �12)−1

]

(C.20)

with �−1
22 �T

12(�11 − �12�
−1
22 �T

12)−1 = [�−1
11 �12(�22 − �T

12�
−1
11 �12)−1]T . Therefore, H11

and H12 can be expressed in terms of �11, �12 and �22 as follows:

H11 = (�11 − �12�
−1
22 �T

12)−1 (C.21)

and

H12 = −(�11 − �12�
−1
22 �T

12)−1�12�
−1
22 (C.22)
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Substituting these equations into Equation (C.19), the conditional mean and its covariance
matrix are given by:

μx1|x2
≡ E[x1|x2] = μ1 − H−1

11 H12(x2 − μ2)

= μ1 + �12�
−1
22 (x2 − μ2)

(C.23)

and

�x1|x2 = H−1
11 = �11 − �12�

−1
22 �T

12 (C.24)

If �x is singular, then one first diagonalizes �x:

�x = V

⎡
⎢⎢⎢⎢⎣

λ1 0

λ2

. . .

0 λNX

⎤
⎥⎥⎥⎥⎦

VT (C.25)

with VT = V−1. Since �x is singular, there is at least one zero eigenvalue. Note that the column
vectors of V are mutually orthogonal since �x is symmetric. Define a partial eigenvector matrix
V0 ∈ RNX×N0 to include all eigenvectors associated with the zero eigenvalue, where N0 is the
multiplicity of the zero eigenvalue. It follows that the random vector:

ξ = VT
0 (x − μ) (C.26)

have zero mean and zero covariance matrix. Therefore, the linear algebraic equation:

VT
0 (x − μ) = 0 (C.27)

gives the mathematical constraints for the random variables in x so the problem order can be
reduced. Note that the matrix V0 has full rank, i.e., ρ(V0) = N0. The following example is
used to demonstrate this procedure.

Example. Consider four Gaussian random variables x1, x2, x3, x4 with means 1, 2, 3, 4,
respectively. The covariance matrix of x = [x1, x2, x3, x4]T is:

�x =

⎡
⎢⎢⎢⎣

4 2 2 4

2 1 1 2

2 1 4 2

4 2 2 9

⎤
⎥⎥⎥⎦

The rank of this matrix is ρ(�x) = 3 and the zero eigenvalue has a multiplicity of one. By
using MATLAB® [171], its corresponding eigenvector is φ = [0.4472, −0.8944, 0, 0]T so
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the matrix VT
0 in Equation (C.26) can be taken as:

VT
0 = [

0.4472 −0.8944 0 0
]

This implies that the variable ξ = 0.4472(x1 − 1) − 0.8944(x2 − 2) has zero mean and zero
variance. In other words:

x1 − 1 = 2(x2 − 2)

at least almost everywhere (a.e.).

Case 1: Prediction of x1 and x2 by measurement of x3 and x4
Since x1 and x2 are fully correlated, the original problem with four random variables can be
reduced to three random variables by predicting only x2 with x3 and x4. The covariance matrix
for x′ = [x2, x3, x4]T is:

�x′ =

⎡
⎢⎣

1 1 2

1 4 2

2 2 9

⎤
⎥⎦

and non-singular. By using Equation (C.23), the conditional mean is:

E[x2|x3, x4] = 2 + [1, 2]

[
4 2

2 9

]−1 [
x3 − 3

x4 − 4

]
= 2 + 0.1563(x3 − 3) + 0.1875(x4 − 4)

By using Equation (C.24), the conditional variance is 0.4688. Since x1 is fully correlated with
x2, it can be predicted as follows:

E[x1|x3, x4] = E[1 + 2(x2 − 2)|x3, x4] = 1 + 0.3125(x3 − 3) + 0.375(x4 − 4)

with variance 22 × 0.4688 ≈ 1.875. Finally, the conditional covariance matrix of x1 and x2 is:
[

1.875 0.9375

0.9375 0.4688

]

Case 2: Prediction of x1 and x3 by measurement of x2 and x4
Since x1 and x2 are fully correlated, x1 can be determined with zero variance: x1 = 1 +
2(x2 − 2). To predict x3 by x2 and x4, the covariance matrix is rearranged for the random
vector x′ = [x3, x2, x4]T :

�x′ =

⎡
⎢⎣

4 1 2

1 1 2

2 2 9

⎤
⎥⎦

By using Equation (C.23), the conditional mean is:

E[x3|x2, x4] = 2 + [1, 2]

[
1 2

2 9

]−1 [
x2 − 2

x4 − 4

]
= 2 + (x2 − 2)
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By using Equation (C.24), the conditional variance is 3. Finally, The conditional covariance
matrix for x1 and x3 is:

[
0 0

0 3

]

Case 3: Prediction of x3 and x4 by measurement of x1 and x2
Since x1 and x2 are fully correlated, the conditioning information is redundant and x2 can be
omitted. In this case, the covariance matrix is rearranged for x′ = [x3, x4, x1]T :

�x′ =

⎡
⎢⎣

4 2 2

2 9 4

2 4 4

⎤
⎥⎦

By using Equation (C.23), the conditional mean is:

E

[
[x3, x4]T

∣∣∣∣x1

]
=

[
3

4

]
+

[
2

4

]
× 4−1(x1 − 1) =

[
3 + 0.5(x1 − 1)

4 + (x1 − 1)

]

By using Equation (C.24), the covariance matrix of the prediction error of x3 and x4 is:
[

3 0

0 5

]
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